metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C3⋊2Q16, C4.4D6, C6.10D4, Q8.2S3, C12.4C22, Dic6.2C2, C3⋊C8.C2, (C3×Q8).1C2, C2.7(C3⋊D4), SmallGroup(48,18)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3⋊Q16
G = < a,b,c | a3=b8=1, c2=b4, bab-1=a-1, ac=ca, cbc-1=b-1 >
Character table of C3⋊Q16
class | 1 | 2 | 3 | 4A | 4B | 4C | 6 | 8A | 8B | 12A | 12B | 12C | |
size | 1 | 1 | 2 | 2 | 4 | 12 | 2 | 6 | 6 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 2 | -1 | 2 | 2 | 0 | -1 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ7 | 2 | 2 | -1 | 2 | -2 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | √2 | -√2 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ9 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | -√2 | √2 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ10 | 2 | 2 | -1 | -2 | 0 | 0 | -1 | 0 | 0 | -√-3 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ11 | 2 | 2 | -1 | -2 | 0 | 0 | -1 | 0 | 0 | √-3 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ12 | 4 | -4 | -2 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 46 31)(2 32 47)(3 48 25)(4 26 41)(5 42 27)(6 28 43)(7 44 29)(8 30 45)(9 19 35)(10 36 20)(11 21 37)(12 38 22)(13 23 39)(14 40 24)(15 17 33)(16 34 18)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 23 5 19)(2 22 6 18)(3 21 7 17)(4 20 8 24)(9 31 13 27)(10 30 14 26)(11 29 15 25)(12 28 16 32)(33 48 37 44)(34 47 38 43)(35 46 39 42)(36 45 40 41)
G:=sub<Sym(48)| (1,46,31)(2,32,47)(3,48,25)(4,26,41)(5,42,27)(6,28,43)(7,44,29)(8,30,45)(9,19,35)(10,36,20)(11,21,37)(12,38,22)(13,23,39)(14,40,24)(15,17,33)(16,34,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41)>;
G:=Group( (1,46,31)(2,32,47)(3,48,25)(4,26,41)(5,42,27)(6,28,43)(7,44,29)(8,30,45)(9,19,35)(10,36,20)(11,21,37)(12,38,22)(13,23,39)(14,40,24)(15,17,33)(16,34,18), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,23,5,19)(2,22,6,18)(3,21,7,17)(4,20,8,24)(9,31,13,27)(10,30,14,26)(11,29,15,25)(12,28,16,32)(33,48,37,44)(34,47,38,43)(35,46,39,42)(36,45,40,41) );
G=PermutationGroup([[(1,46,31),(2,32,47),(3,48,25),(4,26,41),(5,42,27),(6,28,43),(7,44,29),(8,30,45),(9,19,35),(10,36,20),(11,21,37),(12,38,22),(13,23,39),(14,40,24),(15,17,33),(16,34,18)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,23,5,19),(2,22,6,18),(3,21,7,17),(4,20,8,24),(9,31,13,27),(10,30,14,26),(11,29,15,25),(12,28,16,32),(33,48,37,44),(34,47,38,43),(35,46,39,42),(36,45,40,41)]])
C3⋊Q16 is a maximal subgroup of
D4.D6 Q8.7D6 S3×Q16 Q16⋊S3 Q8.11D6 Q8.13D6 Q8.14D6 C9⋊Q16 Q8.D9 C32⋊2Q16 C32⋊3Q16 C32⋊7Q16 C6.5S4 A4⋊2Q16 Q8.4S4 C15⋊Q16 C3⋊Dic20 C15⋊7Q16 C21⋊Q16 C3⋊Dic28 C21⋊7Q16 C33⋊Q16
C3⋊Q16 is a maximal quotient of
C6.Q16 C6.SD16 Q8⋊2Dic3 C9⋊Q16 C32⋊2Q16 C32⋊3Q16 C32⋊7Q16 A4⋊2Q16 C15⋊Q16 C3⋊Dic20 C15⋊7Q16 C21⋊Q16 C3⋊Dic28 C21⋊7Q16 C33⋊Q16
Matrix representation of C3⋊Q16 ►in GL4(𝔽5) generated by
1 | 0 | 2 | 3 |
4 | 2 | 4 | 3 |
1 | 4 | 2 | 0 |
0 | 4 | 4 | 3 |
2 | 2 | 3 | 3 |
2 | 4 | 0 | 2 |
0 | 3 | 3 | 0 |
1 | 4 | 1 | 1 |
3 | 2 | 4 | 0 |
1 | 2 | 1 | 3 |
2 | 0 | 4 | 1 |
1 | 1 | 0 | 1 |
G:=sub<GL(4,GF(5))| [1,4,1,0,0,2,4,4,2,4,2,4,3,3,0,3],[2,2,0,1,2,4,3,4,3,0,3,1,3,2,0,1],[3,1,2,1,2,2,0,1,4,1,4,0,0,3,1,1] >;
C3⋊Q16 in GAP, Magma, Sage, TeX
C_3\rtimes Q_{16}
% in TeX
G:=Group("C3:Q16");
// GroupNames label
G:=SmallGroup(48,18);
// by ID
G=gap.SmallGroup(48,18);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,40,61,46,182,97,42,804]);
// Polycyclic
G:=Group<a,b,c|a^3=b^8=1,c^2=b^4,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊Q16 in TeX
Character table of C3⋊Q16 in TeX