Extensions 1→N→G→Q→1 with N=C4 and Q=C6×Dic5

Direct product G=N×Q with N=C4 and Q=C6×Dic5
dρLabelID
Dic5×C2×C12480Dic5xC2xC12480,715

Semidirect products G=N:Q with N=C4 and Q=C6×Dic5
extensionφ:Q→Aut NdρLabelID
C41(C6×Dic5) = C3×D4×Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C4240C4:1(C6xDic5)480,727
C42(C6×Dic5) = C6×C4⋊Dic5φ: C6×Dic5/C2×C30C2 ⊆ Aut C4480C4:2(C6xDic5)480,718

Non-split extensions G=N.Q with N=C4 and Q=C6×Dic5
extensionφ:Q→Aut NdρLabelID
C4.1(C6×Dic5) = C3×D4⋊Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C4240C4.1(C6xDic5)480,110
C4.2(C6×Dic5) = C3×Q8⋊Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C4480C4.2(C6xDic5)480,113
C4.3(C6×Dic5) = C3×D42Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C41204C4.3(C6xDic5)480,115
C4.4(C6×Dic5) = C3×Q8×Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C4480C4.4(C6xDic5)480,738
C4.5(C6×Dic5) = C3×D4.Dic5φ: C6×Dic5/C3×Dic5C2 ⊆ Aut C42404C4.5(C6xDic5)480,741
C4.6(C6×Dic5) = C3×C406C4φ: C6×Dic5/C2×C30C2 ⊆ Aut C4480C4.6(C6xDic5)480,95
C4.7(C6×Dic5) = C3×C405C4φ: C6×Dic5/C2×C30C2 ⊆ Aut C4480C4.7(C6xDic5)480,96
C4.8(C6×Dic5) = C3×C40.6C4φ: C6×Dic5/C2×C30C2 ⊆ Aut C42402C4.8(C6xDic5)480,97
C4.9(C6×Dic5) = C6×C4.Dic5φ: C6×Dic5/C2×C30C2 ⊆ Aut C4240C4.9(C6xDic5)480,714
C4.10(C6×Dic5) = C6×C52C16central extension (φ=1)480C4.10(C6xDic5)480,89
C4.11(C6×Dic5) = C3×C20.4C8central extension (φ=1)2402C4.11(C6xDic5)480,90
C4.12(C6×Dic5) = Dic5×C24central extension (φ=1)480C4.12(C6xDic5)480,91
C4.13(C6×Dic5) = C3×C408C4central extension (φ=1)480C4.13(C6xDic5)480,93
C4.14(C6×Dic5) = C2×C6×C52C8central extension (φ=1)480C4.14(C6xDic5)480,713
C4.15(C6×Dic5) = C3×C23.21D10central extension (φ=1)240C4.15(C6xDic5)480,719

׿
×
𝔽