Extensions 1→N→G→Q→1 with N=C4×C12 and Q=D5

Direct product G=N×Q with N=C4×C12 and Q=D5
dρLabelID
D5×C4×C12240D5xC4xC12480,664

Semidirect products G=N:Q with N=C4×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C4×C12)⋊1D5 = C3×C42⋊D5φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):1D5480,665
(C4×C12)⋊2D5 = C3×C422D5φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):2D5480,669
(C4×C12)⋊3D5 = C423D15φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):3D5480,841
(C4×C12)⋊4D5 = C426D15φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):4D5480,839
(C4×C12)⋊5D5 = C427D15φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):5D5480,840
(C4×C12)⋊6D5 = D607C4φ: D5/C5C2 ⊆ Aut C4×C121202(C4xC12):6D5480,165
(C4×C12)⋊7D5 = C4×D60φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):7D5480,838
(C4×C12)⋊8D5 = C42×D15φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):8D5480,836
(C4×C12)⋊9D5 = C422D15φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):9D5480,837
(C4×C12)⋊10D5 = C3×D204C4φ: D5/C5C2 ⊆ Aut C4×C121202(C4xC12):10D5480,83
(C4×C12)⋊11D5 = C12×D20φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):11D5480,666
(C4×C12)⋊12D5 = C3×C204D4φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):12D5480,667
(C4×C12)⋊13D5 = C3×C4.D20φ: D5/C5C2 ⊆ Aut C4×C12240(C4xC12):13D5480,668

Non-split extensions G=N.Q with N=C4×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C4×C12).1D5 = C3×C42.D5φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).1D5480,81
(C4×C12).2D5 = C608Q8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).2D5480,834
(C4×C12).3D5 = C60.24Q8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).3D5480,835
(C4×C12).4D5 = C605C8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).4D5480,164
(C4×C12).5D5 = C4×Dic30φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).5D5480,833
(C4×C12).6D5 = C4×C153C8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).6D5480,162
(C4×C12).7D5 = C42.D15φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).7D5480,163
(C4×C12).8D5 = C3×C203C8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).8D5480,82
(C4×C12).9D5 = C12×Dic10φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).9D5480,661
(C4×C12).10D5 = C3×C202Q8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).10D5480,662
(C4×C12).11D5 = C3×C20.6Q8φ: D5/C5C2 ⊆ Aut C4×C12480(C4xC12).11D5480,663
(C4×C12).12D5 = C12×C52C8central extension (φ=1)480(C4xC12).12D5480,80

׿
×
𝔽