direct product, abelian, monomial, 2-elementary
Aliases: C4×C12, SmallGroup(48,20)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C4×C12 |
C1 — C4×C12 |
C1 — C4×C12 |
Generators and relations for C4×C12
G = < a,b | a4=b12=1, ab=ba >
(1 39 36 24)(2 40 25 13)(3 41 26 14)(4 42 27 15)(5 43 28 16)(6 44 29 17)(7 45 30 18)(8 46 31 19)(9 47 32 20)(10 48 33 21)(11 37 34 22)(12 38 35 23)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,39,36,24)(2,40,25,13)(3,41,26,14)(4,42,27,15)(5,43,28,16)(6,44,29,17)(7,45,30,18)(8,46,31,19)(9,47,32,20)(10,48,33,21)(11,37,34,22)(12,38,35,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)>;
G:=Group( (1,39,36,24)(2,40,25,13)(3,41,26,14)(4,42,27,15)(5,43,28,16)(6,44,29,17)(7,45,30,18)(8,46,31,19)(9,47,32,20)(10,48,33,21)(11,37,34,22)(12,38,35,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,39,36,24),(2,40,25,13),(3,41,26,14),(4,42,27,15),(5,43,28,16),(6,44,29,17),(7,45,30,18),(8,46,31,19),(9,47,32,20),(10,48,33,21),(11,37,34,22),(12,38,35,23)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)]])
C4×C12 is a maximal subgroup of
C42.S3 C12⋊C8 C42⋊4S3 C12⋊2Q8 C12.6Q8 C42⋊2S3 C4⋊D12 C42⋊7S3 C42⋊3S3 C42⋊C9
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | ··· | 4L | 6A | ··· | 6F | 12A | ··· | 12X |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | ||||
image | C1 | C2 | C3 | C4 | C6 | C12 |
kernel | C4×C12 | C2×C12 | C42 | C12 | C2×C4 | C4 |
# reps | 1 | 3 | 2 | 12 | 6 | 24 |
Matrix representation of C4×C12 ►in GL2(𝔽13) generated by
12 | 0 |
0 | 5 |
5 | 0 |
0 | 4 |
G:=sub<GL(2,GF(13))| [12,0,0,5],[5,0,0,4] >;
C4×C12 in GAP, Magma, Sage, TeX
C_4\times C_{12}
% in TeX
G:=Group("C4xC12");
// GroupNames label
G:=SmallGroup(48,20);
// by ID
G=gap.SmallGroup(48,20);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-2,60,126]);
// Polycyclic
G:=Group<a,b|a^4=b^12=1,a*b=b*a>;
// generators/relations
Export