Extensions 1→N→G→Q→1 with N=C4 and Q=C5×Dic6

Direct product G=N×Q with N=C4 and Q=C5×Dic6
dρLabelID
C20×Dic6480C20xDic6480,747

Semidirect products G=N:Q with N=C4 and Q=C5×Dic6
extensionφ:Q→Aut NdρLabelID
C41(C5×Dic6) = C5×C12⋊Q8φ: C5×Dic6/C5×Dic3C2 ⊆ Aut C4480C4:1(C5xDic6)480,767
C42(C5×Dic6) = C5×C122Q8φ: C5×Dic6/C60C2 ⊆ Aut C4480C4:2(C5xDic6)480,748

Non-split extensions G=N.Q with N=C4 and Q=C5×Dic6
extensionφ:Q→Aut NdρLabelID
C4.1(C5×Dic6) = C5×C6.Q16φ: C5×Dic6/C5×Dic3C2 ⊆ Aut C4480C4.1(C5xDic6)480,126
C4.2(C5×Dic6) = C5×C12.Q8φ: C5×Dic6/C5×Dic3C2 ⊆ Aut C4480C4.2(C5xDic6)480,127
C4.3(C5×Dic6) = C5×C4.Dic6φ: C5×Dic6/C5×Dic3C2 ⊆ Aut C4480C4.3(C5xDic6)480,769
C4.4(C5×Dic6) = C5×C8⋊Dic3φ: C5×Dic6/C60C2 ⊆ Aut C4480C4.4(C5xDic6)480,136
C4.5(C5×Dic6) = C5×C241C4φ: C5×Dic6/C60C2 ⊆ Aut C4480C4.5(C5xDic6)480,137
C4.6(C5×Dic6) = C5×C12.6Q8φ: C5×Dic6/C60C2 ⊆ Aut C4480C4.6(C5xDic6)480,749
C4.7(C5×Dic6) = C5×C12⋊C8central extension (φ=1)480C4.7(C5xDic6)480,123
C4.8(C5×Dic6) = C5×Dic3⋊C8central extension (φ=1)480C4.8(C5xDic6)480,133

׿
×
𝔽