Copied to
clipboard

G = C5×Dic6order 120 = 23·3·5

Direct product of C5 and Dic6

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C5×Dic6, C154Q8, C60.4C2, C20.3S3, C12.1C10, C10.13D6, Dic3.C10, C30.18C22, C3⋊(C5×Q8), C4.(C5×S3), C2.3(S3×C10), C6.1(C2×C10), (C5×Dic3).2C2, SmallGroup(120,21)

Series: Derived Chief Lower central Upper central

C1C6 — C5×Dic6
C1C3C6C30C5×Dic3 — C5×Dic6
C3C6 — C5×Dic6
C1C10C20

Generators and relations for C5×Dic6
 G = < a,b,c | a5=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >

3C4
3C4
3Q8
3C20
3C20
3C5×Q8

Smallest permutation representation of C5×Dic6
Regular action on 120 points
Generators in S120
(1 16 98 75 118)(2 17 99 76 119)(3 18 100 77 120)(4 19 101 78 109)(5 20 102 79 110)(6 21 103 80 111)(7 22 104 81 112)(8 23 105 82 113)(9 24 106 83 114)(10 13 107 84 115)(11 14 108 73 116)(12 15 97 74 117)(25 52 95 46 72)(26 53 96 47 61)(27 54 85 48 62)(28 55 86 37 63)(29 56 87 38 64)(30 57 88 39 65)(31 58 89 40 66)(32 59 90 41 67)(33 60 91 42 68)(34 49 92 43 69)(35 50 93 44 70)(36 51 94 45 71)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 38 7 44)(2 37 8 43)(3 48 9 42)(4 47 10 41)(5 46 11 40)(6 45 12 39)(13 67 19 61)(14 66 20 72)(15 65 21 71)(16 64 22 70)(17 63 23 69)(18 62 24 68)(25 108 31 102)(26 107 32 101)(27 106 33 100)(28 105 34 99)(29 104 35 98)(30 103 36 97)(49 76 55 82)(50 75 56 81)(51 74 57 80)(52 73 58 79)(53 84 59 78)(54 83 60 77)(85 114 91 120)(86 113 92 119)(87 112 93 118)(88 111 94 117)(89 110 95 116)(90 109 96 115)

G:=sub<Sym(120)| (1,16,98,75,118)(2,17,99,76,119)(3,18,100,77,120)(4,19,101,78,109)(5,20,102,79,110)(6,21,103,80,111)(7,22,104,81,112)(8,23,105,82,113)(9,24,106,83,114)(10,13,107,84,115)(11,14,108,73,116)(12,15,97,74,117)(25,52,95,46,72)(26,53,96,47,61)(27,54,85,48,62)(28,55,86,37,63)(29,56,87,38,64)(30,57,88,39,65)(31,58,89,40,66)(32,59,90,41,67)(33,60,91,42,68)(34,49,92,43,69)(35,50,93,44,70)(36,51,94,45,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,67,19,61)(14,66,20,72)(15,65,21,71)(16,64,22,70)(17,63,23,69)(18,62,24,68)(25,108,31,102)(26,107,32,101)(27,106,33,100)(28,105,34,99)(29,104,35,98)(30,103,36,97)(49,76,55,82)(50,75,56,81)(51,74,57,80)(52,73,58,79)(53,84,59,78)(54,83,60,77)(85,114,91,120)(86,113,92,119)(87,112,93,118)(88,111,94,117)(89,110,95,116)(90,109,96,115)>;

G:=Group( (1,16,98,75,118)(2,17,99,76,119)(3,18,100,77,120)(4,19,101,78,109)(5,20,102,79,110)(6,21,103,80,111)(7,22,104,81,112)(8,23,105,82,113)(9,24,106,83,114)(10,13,107,84,115)(11,14,108,73,116)(12,15,97,74,117)(25,52,95,46,72)(26,53,96,47,61)(27,54,85,48,62)(28,55,86,37,63)(29,56,87,38,64)(30,57,88,39,65)(31,58,89,40,66)(32,59,90,41,67)(33,60,91,42,68)(34,49,92,43,69)(35,50,93,44,70)(36,51,94,45,71), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,38,7,44)(2,37,8,43)(3,48,9,42)(4,47,10,41)(5,46,11,40)(6,45,12,39)(13,67,19,61)(14,66,20,72)(15,65,21,71)(16,64,22,70)(17,63,23,69)(18,62,24,68)(25,108,31,102)(26,107,32,101)(27,106,33,100)(28,105,34,99)(29,104,35,98)(30,103,36,97)(49,76,55,82)(50,75,56,81)(51,74,57,80)(52,73,58,79)(53,84,59,78)(54,83,60,77)(85,114,91,120)(86,113,92,119)(87,112,93,118)(88,111,94,117)(89,110,95,116)(90,109,96,115) );

G=PermutationGroup([[(1,16,98,75,118),(2,17,99,76,119),(3,18,100,77,120),(4,19,101,78,109),(5,20,102,79,110),(6,21,103,80,111),(7,22,104,81,112),(8,23,105,82,113),(9,24,106,83,114),(10,13,107,84,115),(11,14,108,73,116),(12,15,97,74,117),(25,52,95,46,72),(26,53,96,47,61),(27,54,85,48,62),(28,55,86,37,63),(29,56,87,38,64),(30,57,88,39,65),(31,58,89,40,66),(32,59,90,41,67),(33,60,91,42,68),(34,49,92,43,69),(35,50,93,44,70),(36,51,94,45,71)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,38,7,44),(2,37,8,43),(3,48,9,42),(4,47,10,41),(5,46,11,40),(6,45,12,39),(13,67,19,61),(14,66,20,72),(15,65,21,71),(16,64,22,70),(17,63,23,69),(18,62,24,68),(25,108,31,102),(26,107,32,101),(27,106,33,100),(28,105,34,99),(29,104,35,98),(30,103,36,97),(49,76,55,82),(50,75,56,81),(51,74,57,80),(52,73,58,79),(53,84,59,78),(54,83,60,77),(85,114,91,120),(86,113,92,119),(87,112,93,118),(88,111,94,117),(89,110,95,116),(90,109,96,115)]])

C5×Dic6 is a maximal subgroup of
C30.D4  Dic6⋊D5  C15⋊Q16  C5⋊Dic12  D20⋊S3  D15⋊Q8  C12.28D10  C5×S3×Q8

45 conjugacy classes

class 1  2  3 4A4B4C5A5B5C5D 6 10A10B10C10D12A12B15A15B15C15D20A20B20C20D20E···20L30A30B30C30D60A···60H
order12344455556101010101212151515152020202020···203030303060···60
size11226611112111122222222226···622222···2

45 irreducible representations

dim11111122222222
type++++-+-
imageC1C2C2C5C10C10S3Q8D6Dic6C5×S3C5×Q8S3×C10C5×Dic6
kernelC5×Dic6C5×Dic3C60Dic6Dic3C12C20C15C10C5C4C3C2C1
# reps12148411124448

Matrix representation of C5×Dic6 in GL2(𝔽11) generated by

90
09
,
12
74
,
1010
21
G:=sub<GL(2,GF(11))| [9,0,0,9],[1,7,2,4],[10,2,10,1] >;

C5×Dic6 in GAP, Magma, Sage, TeX

C_5\times {\rm Dic}_6
% in TeX

G:=Group("C5xDic6");
// GroupNames label

G:=SmallGroup(120,21);
// by ID

G=gap.SmallGroup(120,21);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-3,100,221,106,2004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×Dic6 in TeX

׿
×
𝔽