Extensions 1→N→G→Q→1 with N=C4 and Q=C10×Dic3

Direct product G=N×Q with N=C4 and Q=C10×Dic3
dρLabelID
Dic3×C2×C20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C4 and Q=C10×Dic3
extensionφ:Q→Aut NdρLabelID
C41(C10×Dic3) = C5×D4×Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C4240C4:1(C10xDic3)480,813
C42(C10×Dic3) = C10×C4⋊Dic3φ: C10×Dic3/C2×C30C2 ⊆ Aut C4480C4:2(C10xDic3)480,804

Non-split extensions G=N.Q with N=C4 and Q=C10×Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C10×Dic3) = C5×D4⋊Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C4240C4.1(C10xDic3)480,151
C4.2(C10×Dic3) = C5×Q82Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C4480C4.2(C10xDic3)480,154
C4.3(C10×Dic3) = C5×Q83Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C41204C4.3(C10xDic3)480,156
C4.4(C10×Dic3) = C5×Q8×Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C4480C4.4(C10xDic3)480,824
C4.5(C10×Dic3) = C5×D4.Dic3φ: C10×Dic3/C5×Dic3C2 ⊆ Aut C42404C4.5(C10xDic3)480,827
C4.6(C10×Dic3) = C5×C8⋊Dic3φ: C10×Dic3/C2×C30C2 ⊆ Aut C4480C4.6(C10xDic3)480,136
C4.7(C10×Dic3) = C5×C241C4φ: C10×Dic3/C2×C30C2 ⊆ Aut C4480C4.7(C10xDic3)480,137
C4.8(C10×Dic3) = C5×C24.C4φ: C10×Dic3/C2×C30C2 ⊆ Aut C42402C4.8(C10xDic3)480,138
C4.9(C10×Dic3) = C10×C4.Dic3φ: C10×Dic3/C2×C30C2 ⊆ Aut C4240C4.9(C10xDic3)480,800
C4.10(C10×Dic3) = C10×C3⋊C16central extension (φ=1)480C4.10(C10xDic3)480,130
C4.11(C10×Dic3) = C5×C12.C8central extension (φ=1)2402C4.11(C10xDic3)480,131
C4.12(C10×Dic3) = Dic3×C40central extension (φ=1)480C4.12(C10xDic3)480,132
C4.13(C10×Dic3) = C5×C24⋊C4central extension (φ=1)480C4.13(C10xDic3)480,134
C4.14(C10×Dic3) = C2×C10×C3⋊C8central extension (φ=1)480C4.14(C10xDic3)480,799
C4.15(C10×Dic3) = C5×C23.26D6central extension (φ=1)240C4.15(C10xDic3)480,805

׿
×
𝔽