Extensions 1→N→G→Q→1 with N=C5xD8 and Q=S3

Direct product G=NxQ with N=C5xD8 and Q=S3
dρLabelID
C5xS3xD81204C5xS3xD8480,789

Semidirect products G=N:Q with N=C5xD8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xD8):1S3 = C15:7D16φ: S3/C3C2 ⊆ Out C5xD82404+(C5xD8):1S3480,186
(C5xD8):2S3 = D8xD15φ: S3/C3C2 ⊆ Out C5xD81204+(C5xD8):2S3480,875
(C5xD8):3S3 = D8:3D15φ: S3/C3C2 ⊆ Out C5xD82404-(C5xD8):3S3480,877
(C5xD8):4S3 = D8:D15φ: S3/C3C2 ⊆ Out C5xD81204(C5xD8):4S3480,876
(C5xD8):5S3 = C5xC3:D16φ: S3/C3C2 ⊆ Out C5xD82404(C5xD8):5S3480,145
(C5xD8):6S3 = C5xD8:S3φ: S3/C3C2 ⊆ Out C5xD81204(C5xD8):6S3480,790
(C5xD8):7S3 = C5xD8:3S3φ: trivial image2404(C5xD8):7S3480,791

Non-split extensions G=N.Q with N=C5xD8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5xD8).1S3 = D8.D15φ: S3/C3C2 ⊆ Out C5xD82404-(C5xD8).1S3480,187
(C5xD8).2S3 = C5xD8.S3φ: S3/C3C2 ⊆ Out C5xD82404(C5xD8).2S3480,146

׿
x
:
Z
F
o
wr
Q
<