Extensions 1→N→G→Q→1 with N=C5×D8 and Q=S3

Direct product G=N×Q with N=C5×D8 and Q=S3
dρLabelID
C5×S3×D81204C5xS3xD8480,789

Semidirect products G=N:Q with N=C5×D8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×D8)⋊1S3 = C157D16φ: S3/C3C2 ⊆ Out C5×D82404+(C5xD8):1S3480,186
(C5×D8)⋊2S3 = D8×D15φ: S3/C3C2 ⊆ Out C5×D81204+(C5xD8):2S3480,875
(C5×D8)⋊3S3 = D83D15φ: S3/C3C2 ⊆ Out C5×D82404-(C5xD8):3S3480,877
(C5×D8)⋊4S3 = D8⋊D15φ: S3/C3C2 ⊆ Out C5×D81204(C5xD8):4S3480,876
(C5×D8)⋊5S3 = C5×C3⋊D16φ: S3/C3C2 ⊆ Out C5×D82404(C5xD8):5S3480,145
(C5×D8)⋊6S3 = C5×D8⋊S3φ: S3/C3C2 ⊆ Out C5×D81204(C5xD8):6S3480,790
(C5×D8)⋊7S3 = C5×D83S3φ: trivial image2404(C5xD8):7S3480,791

Non-split extensions G=N.Q with N=C5×D8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×D8).1S3 = D8.D15φ: S3/C3C2 ⊆ Out C5×D82404-(C5xD8).1S3480,187
(C5×D8).2S3 = C5×D8.S3φ: S3/C3C2 ⊆ Out C5×D82404(C5xD8).2S3480,146

׿
×
𝔽