Copied to
clipboard

G = D8×D15order 480 = 25·3·5

Direct product of D8 and D15

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8×D15, C84D30, C406D6, D41D30, C246D10, D1207C2, C1203C22, D30.48D4, D6014C22, C60.64C23, Dic15.22D4, C54(S3×D8), C34(D5×D8), (C3×D8)⋊2D5, (C5×D4)⋊5D6, (C5×D8)⋊2S3, C1513(C2×D8), D4⋊D159C2, (C3×D4)⋊5D10, (C15×D8)⋊2C2, (D4×D15)⋊8C2, (C8×D15)⋊1C2, C6.108(D4×D5), C2.15(D4×D15), C10.110(S3×D4), C30.315(C2×D4), C4.1(C22×D15), C153C827C22, (D4×C15)⋊14C22, C20.102(C22×S3), (C4×D15).42C22, C12.102(C22×D5), SmallGroup(480,875)

Series: Derived Chief Lower central Upper central

C1C60 — D8×D15
C1C5C15C30C60C4×D15D4×D15 — D8×D15
C15C30C60 — D8×D15
C1C2C4D8

Generators and relations for D8×D15
 G = < a,b,c,d | a8=b2=c15=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1300 in 152 conjugacy classes, 43 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, D4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C2×C8, D8, D8, C2×D4, Dic5, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, D15, D15, C30, C30, C2×D8, C52C8, C40, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, S3×C8, D24, D4⋊S3, C3×D8, S3×D4, Dic15, C60, D30, D30, C2×C30, C8×D5, D40, D4⋊D5, C5×D8, D4×D5, S3×D8, C153C8, C120, C4×D15, D60, C157D4, D4×C15, C22×D15, D5×D8, C8×D15, D120, D4⋊D15, C15×D8, D4×D15, D8×D15
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, D8, C2×D4, D10, C22×S3, D15, C2×D8, C22×D5, S3×D4, D30, D4×D5, S3×D8, C22×D15, D5×D8, D4×D15, D8×D15

Smallest permutation representation of D8×D15
On 120 points
Generators in S120
(1 95 39 61 20 106 54 84)(2 96 40 62 21 107 55 85)(3 97 41 63 22 108 56 86)(4 98 42 64 23 109 57 87)(5 99 43 65 24 110 58 88)(6 100 44 66 25 111 59 89)(7 101 45 67 26 112 60 90)(8 102 31 68 27 113 46 76)(9 103 32 69 28 114 47 77)(10 104 33 70 29 115 48 78)(11 105 34 71 30 116 49 79)(12 91 35 72 16 117 50 80)(13 92 36 73 17 118 51 81)(14 93 37 74 18 119 52 82)(15 94 38 75 19 120 53 83)
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 73)(14 74)(15 75)(16 80)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 76)(28 77)(29 78)(30 79)(31 102)(32 103)(33 104)(34 105)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 106)(55 107)(56 108)(57 109)(58 110)(59 111)(60 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 19)(2 18)(3 17)(4 16)(5 30)(6 29)(7 28)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 21)(15 20)(31 46)(32 60)(33 59)(34 58)(35 57)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(43 49)(44 48)(45 47)(61 83)(62 82)(63 81)(64 80)(65 79)(66 78)(67 77)(68 76)(69 90)(70 89)(71 88)(72 87)(73 86)(74 85)(75 84)(91 109)(92 108)(93 107)(94 106)(95 120)(96 119)(97 118)(98 117)(99 116)(100 115)(101 114)(102 113)(103 112)(104 111)(105 110)

G:=sub<Sym(120)| (1,95,39,61,20,106,54,84)(2,96,40,62,21,107,55,85)(3,97,41,63,22,108,56,86)(4,98,42,64,23,109,57,87)(5,99,43,65,24,110,58,88)(6,100,44,66,25,111,59,89)(7,101,45,67,26,112,60,90)(8,102,31,68,27,113,46,76)(9,103,32,69,28,114,47,77)(10,104,33,70,29,115,48,78)(11,105,34,71,30,116,49,79)(12,91,35,72,16,117,50,80)(13,92,36,73,17,118,51,81)(14,93,37,74,18,119,52,82)(15,94,38,75,19,120,53,83), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,76)(28,77)(29,78)(30,79)(31,102)(32,103)(33,104)(34,105)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,19)(2,18)(3,17)(4,16)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(31,46)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110)>;

G:=Group( (1,95,39,61,20,106,54,84)(2,96,40,62,21,107,55,85)(3,97,41,63,22,108,56,86)(4,98,42,64,23,109,57,87)(5,99,43,65,24,110,58,88)(6,100,44,66,25,111,59,89)(7,101,45,67,26,112,60,90)(8,102,31,68,27,113,46,76)(9,103,32,69,28,114,47,77)(10,104,33,70,29,115,48,78)(11,105,34,71,30,116,49,79)(12,91,35,72,16,117,50,80)(13,92,36,73,17,118,51,81)(14,93,37,74,18,119,52,82)(15,94,38,75,19,120,53,83), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,73)(14,74)(15,75)(16,80)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,76)(28,77)(29,78)(30,79)(31,102)(32,103)(33,104)(34,105)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,106)(55,107)(56,108)(57,109)(58,110)(59,111)(60,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,19)(2,18)(3,17)(4,16)(5,30)(6,29)(7,28)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,21)(15,20)(31,46)(32,60)(33,59)(34,58)(35,57)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(43,49)(44,48)(45,47)(61,83)(62,82)(63,81)(64,80)(65,79)(66,78)(67,77)(68,76)(69,90)(70,89)(71,88)(72,87)(73,86)(74,85)(75,84)(91,109)(92,108)(93,107)(94,106)(95,120)(96,119)(97,118)(98,117)(99,116)(100,115)(101,114)(102,113)(103,112)(104,111)(105,110) );

G=PermutationGroup([[(1,95,39,61,20,106,54,84),(2,96,40,62,21,107,55,85),(3,97,41,63,22,108,56,86),(4,98,42,64,23,109,57,87),(5,99,43,65,24,110,58,88),(6,100,44,66,25,111,59,89),(7,101,45,67,26,112,60,90),(8,102,31,68,27,113,46,76),(9,103,32,69,28,114,47,77),(10,104,33,70,29,115,48,78),(11,105,34,71,30,116,49,79),(12,91,35,72,16,117,50,80),(13,92,36,73,17,118,51,81),(14,93,37,74,18,119,52,82),(15,94,38,75,19,120,53,83)], [(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,73),(14,74),(15,75),(16,80),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,76),(28,77),(29,78),(30,79),(31,102),(32,103),(33,104),(34,105),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,106),(55,107),(56,108),(57,109),(58,110),(59,111),(60,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,19),(2,18),(3,17),(4,16),(5,30),(6,29),(7,28),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,21),(15,20),(31,46),(32,60),(33,59),(34,58),(35,57),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(43,49),(44,48),(45,47),(61,83),(62,82),(63,81),(64,80),(65,79),(66,78),(67,77),(68,76),(69,90),(70,89),(71,88),(72,87),(73,86),(74,85),(75,84),(91,109),(92,108),(93,107),(94,106),(95,120),(96,119),(97,118),(98,117),(99,116),(100,115),(101,114),(102,113),(103,112),(104,111),(105,110)]])

63 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C8A8B8C8D10A10B10C10D10E10F 12 15A15B15C15D20A20B24A24B30A30B30C30D30E···30L40A40B40C40D60A60B60C60D120A···120H
order122222223445566688881010101010101215151515202024243030303030···304040404060606060120···120
size11441515606022302228822303022888842222444422228···8444444444···4

63 irreducible representations

dim111111222222222222444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D8D10D10D15D30D30S3×D4D4×D5S3×D8D5×D8D4×D15D8×D15
kernelD8×D15C8×D15D120D4⋊D15C15×D8D4×D15C5×D8Dic15D30C3×D8C40C5×D4D15C24C3×D4D8C8D4C10C6C5C3C2C1
# reps111212111212424448122448

Matrix representation of D8×D15 in GL4(𝔽241) generated by

1000
0100
000208
00168219
,
1000
0100
0022208
00168219
,
166800
17317800
0010
0001
,
306400
17821100
002400
000240
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,0,168,0,0,208,219],[1,0,0,0,0,1,0,0,0,0,22,168,0,0,208,219],[16,173,0,0,68,178,0,0,0,0,1,0,0,0,0,1],[30,178,0,0,64,211,0,0,0,0,240,0,0,0,0,240] >;

D8×D15 in GAP, Magma, Sage, TeX

D_8\times D_{15}
% in TeX

G:=Group("D8xD15");
// GroupNames label

G:=SmallGroup(480,875);
// by ID

G=gap.SmallGroup(480,875);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,135,346,185,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^15=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽