Copied to
clipboard

G = C5×D8order 80 = 24·5

Direct product of C5 and D8

direct product, metacyclic, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×D8, D4⋊C10, C81C10, C405C2, C10.14D4, C20.17C22, (C5×D4)⋊4C2, C2.3(C5×D4), C4.1(C2×C10), SmallGroup(80,25)

Series: Derived Chief Lower central Upper central

C1C4 — C5×D8
C1C2C4C20C5×D4 — C5×D8
C1C2C4 — C5×D8
C1C10C20 — C5×D8

Generators and relations for C5×D8
 G = < a,b,c | a5=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

4C2
4C2
2C22
2C22
4C10
4C10
2C2×C10
2C2×C10

Smallest permutation representation of C5×D8
On 40 points
Generators in S40
(1 23 13 39 25)(2 24 14 40 26)(3 17 15 33 27)(4 18 16 34 28)(5 19 9 35 29)(6 20 10 36 30)(7 21 11 37 31)(8 22 12 38 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)
(1 8)(2 7)(3 6)(4 5)(9 16)(10 15)(11 14)(12 13)(17 20)(18 19)(21 24)(22 23)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)(37 40)(38 39)

G:=sub<Sym(40)| (1,23,13,39,25)(2,24,14,40,26)(3,17,15,33,27)(4,18,16,34,28)(5,19,9,35,29)(6,20,10,36,30)(7,21,11,37,31)(8,22,12,38,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,20)(18,19)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)>;

G:=Group( (1,23,13,39,25)(2,24,14,40,26)(3,17,15,33,27)(4,18,16,34,28)(5,19,9,35,29)(6,20,10,36,30)(7,21,11,37,31)(8,22,12,38,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40), (1,8)(2,7)(3,6)(4,5)(9,16)(10,15)(11,14)(12,13)(17,20)(18,19)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39) );

G=PermutationGroup([[(1,23,13,39,25),(2,24,14,40,26),(3,17,15,33,27),(4,18,16,34,28),(5,19,9,35,29),(6,20,10,36,30),(7,21,11,37,31),(8,22,12,38,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40)], [(1,8),(2,7),(3,6),(4,5),(9,16),(10,15),(11,14),(12,13),(17,20),(18,19),(21,24),(22,23),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35),(37,40),(38,39)]])

C5×D8 is a maximal subgroup of   C5⋊D16  D8.D5  D8⋊D5  D83D5

35 conjugacy classes

class 1 2A2B2C 4 5A5B5C5D8A8B10A10B10C10D10E···10L20A20B20C20D40A···40H
order122245555881010101010···102020202040···40
size1144211112211114···422222···2

35 irreducible representations

dim1111112222
type+++++
imageC1C2C2C5C10C10D4D8C5×D4C5×D8
kernelC5×D8C40C5×D4D8C8D4C10C5C2C1
# reps1124481248

Matrix representation of C5×D8 in GL2(𝔽31) generated by

160
016
,
030
123
,
231
308
G:=sub<GL(2,GF(31))| [16,0,0,16],[0,1,30,23],[23,30,1,8] >;

C5×D8 in GAP, Magma, Sage, TeX

C_5\times D_8
% in TeX

G:=Group("C5xD8");
// GroupNames label

G:=SmallGroup(80,25);
// by ID

G=gap.SmallGroup(80,25);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-2,221,1203,608,58]);
// Polycyclic

G:=Group<a,b,c|a^5=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×D8 in TeX

׿
×
𝔽