Extensions 1→N→G→Q→1 with N=S3×Dic10 and Q=C2

Direct product G=N×Q with N=S3×Dic10 and Q=C2
dρLabelID
C2×S3×Dic10240C2xS3xDic10480,1078

Semidirect products G=N:Q with N=S3×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic10)⋊1C2 = S3×D4.D5φ: C2/C1C2 ⊆ Out S3×Dic101208-(S3xDic10):1C2480,561
(S3×Dic10)⋊2C2 = C60.10C23φ: C2/C1C2 ⊆ Out S3×Dic102408-(S3xDic10):2C2480,562
(S3×Dic10)⋊3C2 = Dic10.26D6φ: C2/C1C2 ⊆ Out S3×Dic102408-(S3xDic10):3C2480,586
(S3×Dic10)⋊4C2 = C15⋊2- 1+4φ: C2/C1C2 ⊆ Out S3×Dic102408-(S3xDic10):4C2480,1096
(S3×Dic10)⋊5C2 = S3×D42D5φ: C2/C1C2 ⊆ Out S3×Dic101208-(S3xDic10):5C2480,1099
(S3×Dic10)⋊6C2 = D12.29D10φ: C2/C1C2 ⊆ Out S3×Dic102408-(S3xDic10):6C2480,1106
(S3×Dic10)⋊7C2 = S3×Q8×D5φ: C2/C1C2 ⊆ Out S3×Dic101208-(S3xDic10):7C2480,1107
(S3×Dic10)⋊8C2 = S3×C40⋊C2φ: C2/C1C2 ⊆ Out S3×Dic101204(S3xDic10):8C2480,327
(S3×Dic10)⋊9C2 = Dic20⋊S3φ: C2/C1C2 ⊆ Out S3×Dic102404(S3xDic10):9C2480,339
(S3×Dic10)⋊10C2 = C40.2D6φ: C2/C1C2 ⊆ Out S3×Dic102404-(S3xDic10):10C2480,350
(S3×Dic10)⋊11C2 = D20.39D6φ: C2/C1C2 ⊆ Out S3×Dic102404-(S3xDic10):11C2480,1077
(S3×Dic10)⋊12C2 = C30.C24φ: C2/C1C2 ⊆ Out S3×Dic102404(S3xDic10):12C2480,1080
(S3×Dic10)⋊13C2 = S3×C4○D20φ: trivial image1204(S3xDic10):13C2480,1091

Non-split extensions G=N.Q with N=S3×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×Dic10).1C2 = S3×C5⋊Q16φ: C2/C1C2 ⊆ Out S3×Dic102408-(S3xDic10).1C2480,585
(S3×Dic10).2C2 = S3×Dic20φ: C2/C1C2 ⊆ Out S3×Dic102404-(S3xDic10).2C2480,338

׿
×
𝔽