Copied to
clipboard

G = S3×Dic10order 240 = 24·3·5

Direct product of S3 and Dic10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×Dic10, D6.8D10, C20.27D6, Dic307C2, C12.15D10, C30.4C23, Dic5.1D6, C60.13C22, Dic3.7D10, Dic15.3C22, (C5×S3)⋊Q8, C52(S3×Q8), C15⋊Q82C2, C152(C2×Q8), C4.6(S3×D5), (C4×S3).1D5, C31(C2×Dic10), (S3×C20).1C2, C6.4(C22×D5), (C3×Dic10)⋊2C2, C10.4(C22×S3), (S3×Dic5).1C2, (S3×C10).6C22, (C5×Dic3).8C22, (C3×Dic5).1C22, C2.8(C2×S3×D5), SmallGroup(240,128)

Series: Derived Chief Lower central Upper central

C1C30 — S3×Dic10
C1C5C15C30C3×Dic5S3×Dic5 — S3×Dic10
C15C30 — S3×Dic10
C1C2C4

Generators and relations for S3×Dic10
 G = < a,b,c,d | a3=b2=c20=1, d2=c10, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 280 in 76 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C2×C4, Q8, C10, C10, Dic3, Dic3, C12, C12, D6, C15, C2×Q8, Dic5, Dic5, C20, C20, C2×C10, Dic6, C4×S3, C4×S3, C3×Q8, C5×S3, C30, Dic10, Dic10, C2×Dic5, C2×C20, S3×Q8, C5×Dic3, C3×Dic5, Dic15, C60, S3×C10, C2×Dic10, S3×Dic5, C15⋊Q8, C3×Dic10, S3×C20, Dic30, S3×Dic10
Quotients: C1, C2, C22, S3, Q8, C23, D5, D6, C2×Q8, D10, C22×S3, Dic10, C22×D5, S3×Q8, S3×D5, C2×Dic10, C2×S3×D5, S3×Dic10

Smallest permutation representation of S3×Dic10
On 120 points
Generators in S120
(1 60 69)(2 41 70)(3 42 71)(4 43 72)(5 44 73)(6 45 74)(7 46 75)(8 47 76)(9 48 77)(10 49 78)(11 50 79)(12 51 80)(13 52 61)(14 53 62)(15 54 63)(16 55 64)(17 56 65)(18 57 66)(19 58 67)(20 59 68)(21 106 84)(22 107 85)(23 108 86)(24 109 87)(25 110 88)(26 111 89)(27 112 90)(28 113 91)(29 114 92)(30 115 93)(31 116 94)(32 117 95)(33 118 96)(34 119 97)(35 120 98)(36 101 99)(37 102 100)(38 103 81)(39 104 82)(40 105 83)
(41 70)(42 71)(43 72)(44 73)(45 74)(46 75)(47 76)(48 77)(49 78)(50 79)(51 80)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(81 103)(82 104)(83 105)(84 106)(85 107)(86 108)(87 109)(88 110)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 119)(98 120)(99 101)(100 102)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 32 11 22)(2 31 12 21)(3 30 13 40)(4 29 14 39)(5 28 15 38)(6 27 16 37)(7 26 17 36)(8 25 18 35)(9 24 19 34)(10 23 20 33)(41 116 51 106)(42 115 52 105)(43 114 53 104)(44 113 54 103)(45 112 55 102)(46 111 56 101)(47 110 57 120)(48 109 58 119)(49 108 59 118)(50 107 60 117)(61 83 71 93)(62 82 72 92)(63 81 73 91)(64 100 74 90)(65 99 75 89)(66 98 76 88)(67 97 77 87)(68 96 78 86)(69 95 79 85)(70 94 80 84)

G:=sub<Sym(120)| (1,60,69)(2,41,70)(3,42,71)(4,43,72)(5,44,73)(6,45,74)(7,46,75)(8,47,76)(9,48,77)(10,49,78)(11,50,79)(12,51,80)(13,52,61)(14,53,62)(15,54,63)(16,55,64)(17,56,65)(18,57,66)(19,58,67)(20,59,68)(21,106,84)(22,107,85)(23,108,86)(24,109,87)(25,110,88)(26,111,89)(27,112,90)(28,113,91)(29,114,92)(30,115,93)(31,116,94)(32,117,95)(33,118,96)(34,119,97)(35,120,98)(36,101,99)(37,102,100)(38,103,81)(39,104,82)(40,105,83), (41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,101)(100,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,32,11,22)(2,31,12,21)(3,30,13,40)(4,29,14,39)(5,28,15,38)(6,27,16,37)(7,26,17,36)(8,25,18,35)(9,24,19,34)(10,23,20,33)(41,116,51,106)(42,115,52,105)(43,114,53,104)(44,113,54,103)(45,112,55,102)(46,111,56,101)(47,110,57,120)(48,109,58,119)(49,108,59,118)(50,107,60,117)(61,83,71,93)(62,82,72,92)(63,81,73,91)(64,100,74,90)(65,99,75,89)(66,98,76,88)(67,97,77,87)(68,96,78,86)(69,95,79,85)(70,94,80,84)>;

G:=Group( (1,60,69)(2,41,70)(3,42,71)(4,43,72)(5,44,73)(6,45,74)(7,46,75)(8,47,76)(9,48,77)(10,49,78)(11,50,79)(12,51,80)(13,52,61)(14,53,62)(15,54,63)(16,55,64)(17,56,65)(18,57,66)(19,58,67)(20,59,68)(21,106,84)(22,107,85)(23,108,86)(24,109,87)(25,110,88)(26,111,89)(27,112,90)(28,113,91)(29,114,92)(30,115,93)(31,116,94)(32,117,95)(33,118,96)(34,119,97)(35,120,98)(36,101,99)(37,102,100)(38,103,81)(39,104,82)(40,105,83), (41,70)(42,71)(43,72)(44,73)(45,74)(46,75)(47,76)(48,77)(49,78)(50,79)(51,80)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(81,103)(82,104)(83,105)(84,106)(85,107)(86,108)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,101)(100,102), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,32,11,22)(2,31,12,21)(3,30,13,40)(4,29,14,39)(5,28,15,38)(6,27,16,37)(7,26,17,36)(8,25,18,35)(9,24,19,34)(10,23,20,33)(41,116,51,106)(42,115,52,105)(43,114,53,104)(44,113,54,103)(45,112,55,102)(46,111,56,101)(47,110,57,120)(48,109,58,119)(49,108,59,118)(50,107,60,117)(61,83,71,93)(62,82,72,92)(63,81,73,91)(64,100,74,90)(65,99,75,89)(66,98,76,88)(67,97,77,87)(68,96,78,86)(69,95,79,85)(70,94,80,84) );

G=PermutationGroup([[(1,60,69),(2,41,70),(3,42,71),(4,43,72),(5,44,73),(6,45,74),(7,46,75),(8,47,76),(9,48,77),(10,49,78),(11,50,79),(12,51,80),(13,52,61),(14,53,62),(15,54,63),(16,55,64),(17,56,65),(18,57,66),(19,58,67),(20,59,68),(21,106,84),(22,107,85),(23,108,86),(24,109,87),(25,110,88),(26,111,89),(27,112,90),(28,113,91),(29,114,92),(30,115,93),(31,116,94),(32,117,95),(33,118,96),(34,119,97),(35,120,98),(36,101,99),(37,102,100),(38,103,81),(39,104,82),(40,105,83)], [(41,70),(42,71),(43,72),(44,73),(45,74),(46,75),(47,76),(48,77),(49,78),(50,79),(51,80),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(81,103),(82,104),(83,105),(84,106),(85,107),(86,108),(87,109),(88,110),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,119),(98,120),(99,101),(100,102)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,32,11,22),(2,31,12,21),(3,30,13,40),(4,29,14,39),(5,28,15,38),(6,27,16,37),(7,26,17,36),(8,25,18,35),(9,24,19,34),(10,23,20,33),(41,116,51,106),(42,115,52,105),(43,114,53,104),(44,113,54,103),(45,112,55,102),(46,111,56,101),(47,110,57,120),(48,109,58,119),(49,108,59,118),(50,107,60,117),(61,83,71,93),(62,82,72,92),(63,81,73,91),(64,100,74,90),(65,99,75,89),(66,98,76,88),(67,97,77,87),(68,96,78,86),(69,95,79,85),(70,94,80,84)]])

S3×Dic10 is a maximal subgroup of
Dic20⋊S3  C40.2D6  C60.10C23  Dic10.26D6  D20.39D6  C30.C24  C15⋊2- 1+4  D12.29D10  S3×Q8×D5
S3×Dic10 is a maximal quotient of
Dic35Dic10  Dic151Q8  Dic3⋊Dic10  Dic3014C4  Dic3.Dic10  Dic3.2Dic10  D6⋊Dic10  C60.45D4  C60.46D4  Dic3.3Dic10  C60.48D4  D61Dic10  D62Dic10  D63Dic10  D64Dic10  C204Dic6

39 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F5A5B 6 10A10B10C10D10E10F12A12B12C15A15B20A20B20C20D20E20F20G20H30A30B60A60B60C60D
order1222344444455610101010101012121215152020202020202020303060606060
size113322610103030222226666420204422226666444444

39 irreducible representations

dim1111112222222224444
type+++++++-++++++--++-
imageC1C2C2C2C2C2S3Q8D5D6D6D10D10D10Dic10S3×Q8S3×D5C2×S3×D5S3×Dic10
kernelS3×Dic10S3×Dic5C15⋊Q8C3×Dic10S3×C20Dic30Dic10C5×S3C4×S3Dic5C20Dic3C12D6S3C5C4C2C1
# reps1221111222122281224

Matrix representation of S3×Dic10 in GL4(𝔽61) generated by

606000
1000
0010
0001
,
1000
606000
0010
0001
,
1000
0100
003632
00234
,
60000
06000
002731
00434
G:=sub<GL(4,GF(61))| [60,1,0,0,60,0,0,0,0,0,1,0,0,0,0,1],[1,60,0,0,0,60,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,36,2,0,0,32,34],[60,0,0,0,0,60,0,0,0,0,27,4,0,0,31,34] >;

S3×Dic10 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_{10}
% in TeX

G:=Group("S3xDic10");
// GroupNames label

G:=SmallGroup(240,128);
// by ID

G=gap.SmallGroup(240,128);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,48,218,50,490,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^20=1,d^2=c^10,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽