Copied to
clipboard

G = S3×Q8×D5order 480 = 25·3·5

Direct product of S3, Q8 and D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×Q8×D5, Dic614D10, Dic1014D6, C60.59C23, C30.35C24, D30.41C23, Dic3010C22, Dic15.21C23, D15⋊Q87C2, (Q8×D15)⋊6C2, D152(C2×Q8), (C5×Q8)⋊12D6, (C3×Q8)⋊9D10, C15⋊Q84C22, C154(C22×Q8), (D5×Dic6)⋊7C2, (C4×D5).52D6, (S3×Dic10)⋊7C2, (C4×S3).28D10, (Q8×C15)⋊7C22, C6.35(C23×D5), C20.59(C22×S3), C10.35(S3×C23), D6.33(C22×D5), (C6×D5).49C23, C12.59(C22×D5), (S3×C10).33C23, (S3×C20).22C22, (C5×Dic6)⋊10C22, (C4×D15).22C22, D10.56(C22×S3), (D5×C12).22C22, (C3×Dic10)⋊10C22, D30.C2.11C22, (C3×Dic5).18C23, (D5×Dic3).11C22, Dic5.20(C22×S3), (S3×Dic5).11C22, Dic3.19(C22×D5), (C5×Dic3).20C23, C53(C2×S3×Q8), C33(C2×Q8×D5), (C3×Q8×D5)⋊6C2, (C5×S3×Q8)⋊6C2, (C4×S3×D5).1C2, C4.59(C2×S3×D5), (C3×D5)⋊2(C2×Q8), (C5×S3)⋊2(C2×Q8), C2.38(C22×S3×D5), (C2×S3×D5).22C22, SmallGroup(480,1107)

Series: Derived Chief Lower central Upper central

C1C30 — S3×Q8×D5
C1C5C15C30C6×D5C2×S3×D5C4×S3×D5 — S3×Q8×D5
C15C30 — S3×Q8×D5
C1C2Q8

Generators and relations for S3×Q8×D5
 G = < a,b,c,d,e,f | a3=b2=c4=e5=f2=1, d2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd-1=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >

Subgroups: 1388 in 312 conjugacy classes, 122 normal (24 characteristic)
C1, C2, C2 [×6], C3, C4 [×3], C4 [×9], C22 [×7], C5, S3 [×2], S3 [×2], C6, C6 [×2], C2×C4 [×18], Q8, Q8 [×15], C23, D5 [×2], D5 [×2], C10, C10 [×2], Dic3 [×3], Dic3 [×3], C12 [×3], C12 [×3], D6, D6 [×5], C2×C6, C15, C22×C4 [×3], C2×Q8 [×12], Dic5 [×3], Dic5 [×3], C20 [×3], C20 [×3], D10, D10 [×5], C2×C10, Dic6 [×3], Dic6 [×9], C4×S3 [×3], C4×S3 [×9], C2×Dic3 [×3], C2×C12 [×3], C3×Q8, C3×Q8 [×3], C22×S3, C5×S3 [×2], C3×D5 [×2], D15 [×2], C30, C22×Q8, Dic10 [×3], Dic10 [×9], C4×D5 [×3], C4×D5 [×9], C2×Dic5 [×3], C2×C20 [×3], C5×Q8, C5×Q8 [×3], C22×D5, C2×Dic6 [×3], S3×C2×C4 [×3], S3×Q8, S3×Q8 [×7], C6×Q8, C5×Dic3 [×3], C3×Dic5 [×3], Dic15 [×3], C60 [×3], S3×D5 [×4], C6×D5, S3×C10, D30, C2×Dic10 [×3], C2×C4×D5 [×3], Q8×D5, Q8×D5 [×7], Q8×C10, C2×S3×Q8, D5×Dic3 [×3], S3×Dic5 [×3], D30.C2 [×3], C15⋊Q8 [×6], C3×Dic10 [×3], D5×C12 [×3], C5×Dic6 [×3], S3×C20 [×3], Dic30 [×3], C4×D15 [×3], Q8×C15, C2×S3×D5, C2×Q8×D5, D5×Dic6 [×3], S3×Dic10 [×3], D15⋊Q8 [×3], C4×S3×D5 [×3], C3×Q8×D5, C5×S3×Q8, Q8×D15, S3×Q8×D5
Quotients: C1, C2 [×15], C22 [×35], S3, Q8 [×4], C23 [×15], D5, D6 [×7], C2×Q8 [×6], C24, D10 [×7], C22×S3 [×7], C22×Q8, C22×D5 [×7], S3×Q8 [×2], S3×C23, S3×D5, Q8×D5 [×2], C23×D5, C2×S3×Q8, C2×S3×D5 [×3], C2×Q8×D5, C22×S3×D5, S3×Q8×D5

Smallest permutation representation of S3×Q8×D5
On 120 points
Generators in S120
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(6 11)(7 12)(8 13)(9 14)(10 15)(21 26)(22 27)(23 28)(24 29)(25 30)(36 41)(37 42)(38 43)(39 44)(40 45)(51 56)(52 57)(53 58)(54 59)(55 60)(66 71)(67 72)(68 73)(69 74)(70 75)(81 86)(82 87)(83 88)(84 89)(85 90)(96 101)(97 102)(98 103)(99 104)(100 105)(111 116)(112 117)(113 118)(114 119)(115 120)
(1 49 19 34)(2 50 20 35)(3 46 16 31)(4 47 17 32)(5 48 18 33)(6 51 21 36)(7 52 22 37)(8 53 23 38)(9 54 24 39)(10 55 25 40)(11 56 26 41)(12 57 27 42)(13 58 28 43)(14 59 29 44)(15 60 30 45)(61 91 76 106)(62 92 77 107)(63 93 78 108)(64 94 79 109)(65 95 80 110)(66 96 81 111)(67 97 82 112)(68 98 83 113)(69 99 84 114)(70 100 85 115)(71 101 86 116)(72 102 87 117)(73 103 88 118)(74 104 89 119)(75 105 90 120)
(1 79 19 64)(2 80 20 65)(3 76 16 61)(4 77 17 62)(5 78 18 63)(6 81 21 66)(7 82 22 67)(8 83 23 68)(9 84 24 69)(10 85 25 70)(11 86 26 71)(12 87 27 72)(13 88 28 73)(14 89 29 74)(15 90 30 75)(31 106 46 91)(32 107 47 92)(33 108 48 93)(34 109 49 94)(35 110 50 95)(36 111 51 96)(37 112 52 97)(38 113 53 98)(39 114 54 99)(40 115 55 100)(41 116 56 101)(42 117 57 102)(43 118 58 103)(44 119 59 104)(45 120 60 105)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(62 65)(63 64)(67 70)(68 69)(72 75)(73 74)(77 80)(78 79)(82 85)(83 84)(87 90)(88 89)(92 95)(93 94)(97 100)(98 99)(102 105)(103 104)(107 110)(108 109)(112 115)(113 114)(117 120)(118 119)

G:=sub<Sym(120)| (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119)>;

G:=Group( (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (6,11)(7,12)(8,13)(9,14)(10,15)(21,26)(22,27)(23,28)(24,29)(25,30)(36,41)(37,42)(38,43)(39,44)(40,45)(51,56)(52,57)(53,58)(54,59)(55,60)(66,71)(67,72)(68,73)(69,74)(70,75)(81,86)(82,87)(83,88)(84,89)(85,90)(96,101)(97,102)(98,103)(99,104)(100,105)(111,116)(112,117)(113,118)(114,119)(115,120), (1,49,19,34)(2,50,20,35)(3,46,16,31)(4,47,17,32)(5,48,18,33)(6,51,21,36)(7,52,22,37)(8,53,23,38)(9,54,24,39)(10,55,25,40)(11,56,26,41)(12,57,27,42)(13,58,28,43)(14,59,29,44)(15,60,30,45)(61,91,76,106)(62,92,77,107)(63,93,78,108)(64,94,79,109)(65,95,80,110)(66,96,81,111)(67,97,82,112)(68,98,83,113)(69,99,84,114)(70,100,85,115)(71,101,86,116)(72,102,87,117)(73,103,88,118)(74,104,89,119)(75,105,90,120), (1,79,19,64)(2,80,20,65)(3,76,16,61)(4,77,17,62)(5,78,18,63)(6,81,21,66)(7,82,22,67)(8,83,23,68)(9,84,24,69)(10,85,25,70)(11,86,26,71)(12,87,27,72)(13,88,28,73)(14,89,29,74)(15,90,30,75)(31,106,46,91)(32,107,47,92)(33,108,48,93)(34,109,49,94)(35,110,50,95)(36,111,51,96)(37,112,52,97)(38,113,53,98)(39,114,54,99)(40,115,55,100)(41,116,56,101)(42,117,57,102)(43,118,58,103)(44,119,59,104)(45,120,60,105), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119) );

G=PermutationGroup([(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(6,11),(7,12),(8,13),(9,14),(10,15),(21,26),(22,27),(23,28),(24,29),(25,30),(36,41),(37,42),(38,43),(39,44),(40,45),(51,56),(52,57),(53,58),(54,59),(55,60),(66,71),(67,72),(68,73),(69,74),(70,75),(81,86),(82,87),(83,88),(84,89),(85,90),(96,101),(97,102),(98,103),(99,104),(100,105),(111,116),(112,117),(113,118),(114,119),(115,120)], [(1,49,19,34),(2,50,20,35),(3,46,16,31),(4,47,17,32),(5,48,18,33),(6,51,21,36),(7,52,22,37),(8,53,23,38),(9,54,24,39),(10,55,25,40),(11,56,26,41),(12,57,27,42),(13,58,28,43),(14,59,29,44),(15,60,30,45),(61,91,76,106),(62,92,77,107),(63,93,78,108),(64,94,79,109),(65,95,80,110),(66,96,81,111),(67,97,82,112),(68,98,83,113),(69,99,84,114),(70,100,85,115),(71,101,86,116),(72,102,87,117),(73,103,88,118),(74,104,89,119),(75,105,90,120)], [(1,79,19,64),(2,80,20,65),(3,76,16,61),(4,77,17,62),(5,78,18,63),(6,81,21,66),(7,82,22,67),(8,83,23,68),(9,84,24,69),(10,85,25,70),(11,86,26,71),(12,87,27,72),(13,88,28,73),(14,89,29,74),(15,90,30,75),(31,106,46,91),(32,107,47,92),(33,108,48,93),(34,109,49,94),(35,110,50,95),(36,111,51,96),(37,112,52,97),(38,113,53,98),(39,114,54,99),(40,115,55,100),(41,116,56,101),(42,117,57,102),(43,118,58,103),(44,119,59,104),(45,120,60,105)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(62,65),(63,64),(67,70),(68,69),(72,75),(73,74),(77,80),(78,79),(82,85),(83,84),(87,90),(88,89),(92,95),(93,94),(97,100),(98,99),(102,105),(103,104),(107,110),(108,109),(112,115),(113,114),(117,120),(118,119)])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L5A5B6A6B6C10A10B10C10D10E10F12A12B12C12D12E12F15A15B20A···20F20G···20L30A30B60A···60F
order12222222344444444444455666101010101010121212121212151520···2020···20303060···60
size113355151522226661010103030302221010226666444202020444···412···12448···8

60 irreducible representations

dim1111111122222222244448
type+++++++++-+++++++-+-+-
imageC1C2C2C2C2C2C2C2S3Q8D5D6D6D6D10D10D10S3×Q8S3×D5Q8×D5C2×S3×D5S3×Q8×D5
kernelS3×Q8×D5D5×Dic6S3×Dic10D15⋊Q8C4×S3×D5C3×Q8×D5C5×S3×Q8Q8×D15Q8×D5S3×D5S3×Q8Dic10C4×D5C5×Q8Dic6C4×S3C3×Q8D5Q8S3C4C1
# reps1333311114233166222462

Matrix representation of S3×Q8×D5 in GL6(𝔽61)

60600000
100000
001000
000100
000010
000001
,
100000
60600000
001000
000100
000010
000001
,
100000
010000
001000
000100
00006046
0000531
,
100000
010000
001000
000100
00005123
00004610
,
100000
010000
0044100
00166000
000010
000001
,
100000
010000
00606000
000100
000010
000001

G:=sub<GL(6,GF(61))| [60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,60,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,53,0,0,0,0,46,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,51,46,0,0,0,0,23,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,44,16,0,0,0,0,1,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3×Q8×D5 in GAP, Magma, Sage, TeX

S_3\times Q_8\times D_5
% in TeX

G:=Group("S3xQ8xD5");
// GroupNames label

G:=SmallGroup(480,1107);
// by ID

G=gap.SmallGroup(480,1107);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,100,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=e^5=f^2=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽