Extensions 1→N→G→Q→1 with N=C4 and Q=D60

Direct product G=N×Q with N=C4 and Q=D60
dρLabelID
C4×D60240C4xD60480,838

Semidirect products G=N:Q with N=C4 and Q=D60
extensionφ:Q→Aut NdρLabelID
C41D60 = C426D15φ: D60/C60C2 ⊆ Aut C4240C4:1D60480,839
C42D60 = C4⋊D60φ: D60/D30C2 ⊆ Aut C4240C4:2D60480,860

Non-split extensions G=N.Q with N=C4 and Q=D60
extensionφ:Q→Aut NdρLabelID
C4.1D60 = D240φ: D60/C60C2 ⊆ Aut C42402+C4.1D60480,159
C4.2D60 = C48⋊D5φ: D60/C60C2 ⊆ Aut C42402C4.2D60480,160
C4.3D60 = Dic120φ: D60/C60C2 ⊆ Aut C44802-C4.3D60480,161
C4.4D60 = C608Q8φ: D60/C60C2 ⊆ Aut C4480C4.4D60480,834
C4.5D60 = C427D15φ: D60/C60C2 ⊆ Aut C4240C4.5D60480,840
C4.6D60 = C2×C24⋊D5φ: D60/C60C2 ⊆ Aut C4240C4.6D60480,867
C4.7D60 = C2×D120φ: D60/C60C2 ⊆ Aut C4240C4.7D60480,868
C4.8D60 = C2×Dic60φ: D60/C60C2 ⊆ Aut C4480C4.8D60480,870
C4.9D60 = D609C4φ: D60/D30C2 ⊆ Aut C4240C4.9D60480,169
C4.10D60 = Dic309C4φ: D60/D30C2 ⊆ Aut C4480C4.10D60480,170
C4.11D60 = M4(2)⋊D15φ: D60/D30C2 ⊆ Aut C41204+C4.11D60480,183
C4.12D60 = C4.D60φ: D60/D30C2 ⊆ Aut C42404-C4.12D60480,184
C4.13D60 = D306Q8φ: D60/D30C2 ⊆ Aut C4240C4.13D60480,862
C4.14D60 = C8⋊D30φ: D60/D30C2 ⊆ Aut C41204+C4.14D60480,873
C4.15D60 = C8.D30φ: D60/D30C2 ⊆ Aut C42404-C4.15D60480,874
C4.16D60 = C605C8central extension (φ=1)480C4.16D60480,164
C4.17D60 = D607C4central extension (φ=1)1202C4.17D60480,165
C4.18D60 = C4.18D60central extension (φ=1)2402C4.18D60480,179
C4.19D60 = D303C8central extension (φ=1)240C4.19D60480,180
C4.20D60 = C40.69D6central extension (φ=1)2402C4.20D60480,869

׿
×
𝔽