metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: D60, C4⋊D15, C15⋊4D4, C5⋊1D12, C3⋊1D20, C60⋊1C2, C20⋊1S3, C12⋊1D5, D30⋊1C2, C2.4D30, C6.10D10, C10.10D6, C30.10C22, sometimes denoted D120 or Dih60 or Dih120, SmallGroup(120,28)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D60
G = < a,b | a60=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 60)(2 59)(3 58)(4 57)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)
G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,60)(2,59)(3,58)(4,57)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,60),(2,59),(3,58),(4,57),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31)]])
D60 is a maximal subgroup of
C3⋊D40 C5⋊D24 C15⋊SD16 Dic6⋊D5 C24⋊D5 D120 D4⋊D15 Q8⋊2D15 D60⋊C2 C12.28D10 D5×D12 S3×D20 D60⋊11C2 D4×D15 Q8⋊3D15 D180 C3⋊D60 C60⋊S3 C20⋊S4 C20.3S4
D60 is a maximal quotient of
C24⋊D5 D120 Dic60 C60⋊5C4 D30⋊3C4 D180 C3⋊D60 C60⋊S3 C20⋊S4
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 6 | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | 6 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 30 | 30 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
33 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | S3 | D4 | D5 | D6 | D10 | D12 | D15 | D20 | D30 | D60 |
kernel | D60 | C60 | D30 | C20 | C15 | C12 | C10 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of D60 ►in GL2(𝔽61) generated by
28 | 55 |
6 | 14 |
28 | 55 |
39 | 33 |
G:=sub<GL(2,GF(61))| [28,6,55,14],[28,39,55,33] >;
D60 in GAP, Magma, Sage, TeX
D_{60}
% in TeX
G:=Group("D60");
// GroupNames label
G:=SmallGroup(120,28);
// by ID
G=gap.SmallGroup(120,28);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-5,61,26,323,2404]);
// Polycyclic
G:=Group<a,b|a^60=b^2=1,b*a*b=a^-1>;
// generators/relations
Export