Copied to
clipboard

G = M4(2)⋊D15order 480 = 25·3·5

3rd semidirect product of M4(2) and D15 acting via D15/C15=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4.11D60, C12.11D20, C20.11D12, C60.203D4, M4(2)⋊3D15, (C2×C4).1D30, (C2×D60).7C2, (C2×C20).69D6, (C2×C12).70D10, C157(C4.D4), (C5×M4(2))⋊9S3, (C3×M4(2))⋊9D5, C60.7C414C2, C22.4(C4×D15), C10.34(D6⋊C4), C4.21(C157D4), C53(C12.46D4), C32(C20.46D4), (C2×C60).55C22, (C22×D15).1C4, C2.9(D303C4), C20.100(C3⋊D4), C12.100(C5⋊D4), C30.76(C22⋊C4), (C15×M4(2))⋊19C2, C6.19(D10⋊C4), (C2×C6).5(C4×D5), (C2×C10).28(C4×S3), (C2×C30).65(C2×C4), SmallGroup(480,183)

Series: Derived Chief Lower central Upper central

C1C2×C30 — M4(2)⋊D15
C1C5C15C30C60C2×C60C2×D60 — M4(2)⋊D15
C15C30C2×C30 — M4(2)⋊D15
C1C2C2×C4M4(2)

Generators and relations for M4(2)⋊D15
 G = < a,b,c,d | a8=b2=c15=d2=1, bab=a5, ac=ca, dad=ab, bc=cb, bd=db, dcd=c-1 >

Subgroups: 788 in 92 conjugacy classes, 33 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, D5, C10, C10, C12, D6, C2×C6, C15, M4(2), M4(2), C2×D4, C20, D10, C2×C10, C3⋊C8, C24, D12, C2×C12, C22×S3, D15, C30, C30, C4.D4, C52C8, C40, D20, C2×C20, C22×D5, C4.Dic3, C3×M4(2), C2×D12, C60, D30, C2×C30, C4.Dic5, C5×M4(2), C2×D20, C12.46D4, C153C8, C120, D60, C2×C60, C22×D15, C20.46D4, C60.7C4, C15×M4(2), C2×D60, M4(2)⋊D15
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, D10, C4×S3, D12, C3⋊D4, D15, C4.D4, C4×D5, D20, C5⋊D4, D6⋊C4, D30, D10⋊C4, C12.46D4, C4×D15, D60, C157D4, C20.46D4, D303C4, M4(2)⋊D15

Smallest permutation representation of M4(2)⋊D15
On 120 points
Generators in S120
(1 91 39 80 16 107 47 73)(2 92 40 81 17 108 48 74)(3 93 41 82 18 109 49 75)(4 94 42 83 19 110 50 61)(5 95 43 84 20 111 51 62)(6 96 44 85 21 112 52 63)(7 97 45 86 22 113 53 64)(8 98 31 87 23 114 54 65)(9 99 32 88 24 115 55 66)(10 100 33 89 25 116 56 67)(11 101 34 90 26 117 57 68)(12 102 35 76 27 118 58 69)(13 103 36 77 28 119 59 70)(14 104 37 78 29 120 60 71)(15 105 38 79 30 106 46 72)
(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)(67 89)(68 90)(69 76)(70 77)(71 78)(72 79)(73 80)(74 81)(75 82)(91 107)(92 108)(93 109)(94 110)(95 111)(96 112)(97 113)(98 114)(99 115)(100 116)(101 117)(102 118)(103 119)(104 120)(105 106)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(31 54)(32 53)(33 52)(34 51)(35 50)(36 49)(37 48)(38 47)(39 46)(40 60)(41 59)(42 58)(43 57)(44 56)(45 55)(61 69)(62 68)(63 67)(64 66)(70 75)(71 74)(72 73)(76 83)(77 82)(78 81)(79 80)(84 90)(85 89)(86 88)(91 106)(92 120)(93 119)(94 118)(95 117)(96 116)(97 115)(98 114)(99 113)(100 112)(101 111)(102 110)(103 109)(104 108)(105 107)

G:=sub<Sym(120)| (1,91,39,80,16,107,47,73)(2,92,40,81,17,108,48,74)(3,93,41,82,18,109,49,75)(4,94,42,83,19,110,50,61)(5,95,43,84,20,111,51,62)(6,96,44,85,21,112,52,63)(7,97,45,86,22,113,53,64)(8,98,31,87,23,114,54,65)(9,99,32,88,24,115,55,66)(10,100,33,89,25,116,56,67)(11,101,34,90,26,117,57,68)(12,102,35,76,27,118,58,69)(13,103,36,77,28,119,59,70)(14,104,37,78,29,120,60,71)(15,105,38,79,30,106,46,72), (61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(67,89)(68,90)(69,76)(70,77)(71,78)(72,79)(73,80)(74,81)(75,82)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,113)(98,114)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,69)(62,68)(63,67)(64,66)(70,75)(71,74)(72,73)(76,83)(77,82)(78,81)(79,80)(84,90)(85,89)(86,88)(91,106)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107)>;

G:=Group( (1,91,39,80,16,107,47,73)(2,92,40,81,17,108,48,74)(3,93,41,82,18,109,49,75)(4,94,42,83,19,110,50,61)(5,95,43,84,20,111,51,62)(6,96,44,85,21,112,52,63)(7,97,45,86,22,113,53,64)(8,98,31,87,23,114,54,65)(9,99,32,88,24,115,55,66)(10,100,33,89,25,116,56,67)(11,101,34,90,26,117,57,68)(12,102,35,76,27,118,58,69)(13,103,36,77,28,119,59,70)(14,104,37,78,29,120,60,71)(15,105,38,79,30,106,46,72), (61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(67,89)(68,90)(69,76)(70,77)(71,78)(72,79)(73,80)(74,81)(75,82)(91,107)(92,108)(93,109)(94,110)(95,111)(96,112)(97,113)(98,114)(99,115)(100,116)(101,117)(102,118)(103,119)(104,120)(105,106), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,54)(32,53)(33,52)(34,51)(35,50)(36,49)(37,48)(38,47)(39,46)(40,60)(41,59)(42,58)(43,57)(44,56)(45,55)(61,69)(62,68)(63,67)(64,66)(70,75)(71,74)(72,73)(76,83)(77,82)(78,81)(79,80)(84,90)(85,89)(86,88)(91,106)(92,120)(93,119)(94,118)(95,117)(96,116)(97,115)(98,114)(99,113)(100,112)(101,111)(102,110)(103,109)(104,108)(105,107) );

G=PermutationGroup([[(1,91,39,80,16,107,47,73),(2,92,40,81,17,108,48,74),(3,93,41,82,18,109,49,75),(4,94,42,83,19,110,50,61),(5,95,43,84,20,111,51,62),(6,96,44,85,21,112,52,63),(7,97,45,86,22,113,53,64),(8,98,31,87,23,114,54,65),(9,99,32,88,24,115,55,66),(10,100,33,89,25,116,56,67),(11,101,34,90,26,117,57,68),(12,102,35,76,27,118,58,69),(13,103,36,77,28,119,59,70),(14,104,37,78,29,120,60,71),(15,105,38,79,30,106,46,72)], [(61,83),(62,84),(63,85),(64,86),(65,87),(66,88),(67,89),(68,90),(69,76),(70,77),(71,78),(72,79),(73,80),(74,81),(75,82),(91,107),(92,108),(93,109),(94,110),(95,111),(96,112),(97,113),(98,114),(99,115),(100,116),(101,117),(102,118),(103,119),(104,120),(105,106)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(31,54),(32,53),(33,52),(34,51),(35,50),(36,49),(37,48),(38,47),(39,46),(40,60),(41,59),(42,58),(43,57),(44,56),(45,55),(61,69),(62,68),(63,67),(64,66),(70,75),(71,74),(72,73),(76,83),(77,82),(78,81),(79,80),(84,90),(85,89),(86,88),(91,106),(92,120),(93,119),(94,118),(95,117),(96,116),(97,115),(98,114),(99,113),(100,112),(101,111),(102,110),(103,109),(104,108),(105,107)]])

81 conjugacy classes

class 1 2A2B2C2D 3 4A4B5A5B6A6B8A8B8C8D10A10B10C10D12A12B12C15A15B15C15D20A20B20C20D20E20F24A24B24C24D30A30B30C30D30E30F30G30H40A···40H60A···60H60I60J60K60L120A···120P
order1222234455668888101010101212121515151520202020202024242424303030303030303040···4060···6060606060120···120
size11260602222224446060224422422222222444444222244444···42···244444···4

81 irreducible representations

dim1111122222222222222224444
type++++++++++++++++++
imageC1C2C2C2C4S3D4D5D6D10D12C3⋊D4C4×S3D15D20C5⋊D4C4×D5D30D60C157D4C4×D15C4.D4C12.46D4C20.46D4M4(2)⋊D15
kernelM4(2)⋊D15C60.7C4C15×M4(2)C2×D60C22×D15C5×M4(2)C60C3×M4(2)C2×C20C2×C12C20C20C2×C10M4(2)C12C12C2×C6C2×C4C4C4C22C15C5C3C1
# reps1111412212222444448881248

Matrix representation of M4(2)⋊D15 in GL4(𝔽241) generated by

002401
5124023951
8317810
12418110
,
1000
0100
2341232400
2341230240
,
22511000
1953000
110094110
177131131161
,
639400
12717800
110094110
8414784147
G:=sub<GL(4,GF(241))| [0,51,83,124,0,240,178,181,240,239,1,1,1,51,0,0],[1,0,234,234,0,1,123,123,0,0,240,0,0,0,0,240],[225,195,110,177,110,30,0,131,0,0,94,131,0,0,110,161],[63,127,110,84,94,178,0,147,0,0,94,84,0,0,110,147] >;

M4(2)⋊D15 in GAP, Magma, Sage, TeX

M_4(2)\rtimes D_{15}
% in TeX

G:=Group("M4(2):D15");
// GroupNames label

G:=SmallGroup(480,183);
// by ID

G=gap.SmallGroup(480,183);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,36,422,100,346,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^15=d^2=1,b*a*b=a^5,a*c=c*a,d*a*d=a*b,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽