Extensions 1→N→G→Q→1 with N=C3×Dic5 and Q=C8

Direct product G=N×Q with N=C3×Dic5 and Q=C8
dρLabelID
Dic5×C24480Dic5xC24480,91

Semidirect products G=N:Q with N=C3×Dic5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C3×Dic5)⋊1C8 = Dic5×C3⋊C8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):1C8480,25
(C3×Dic5)⋊2C8 = C60.13Q8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):2C8480,58
(C3×Dic5)⋊3C8 = C3×C20.8Q8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):3C8480,92
(C3×Dic5)⋊4C8 = C4×C15⋊C8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):4C8480,305
(C3×Dic5)⋊5C8 = Dic5.13D12φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):5C8480,309
(C3×Dic5)⋊6C8 = C12×C5⋊C8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):6C8480,280
(C3×Dic5)⋊7C8 = C3×Dic5⋊C8φ: C8/C4C2 ⊆ Out C3×Dic5480(C3xDic5):7C8480,284

Non-split extensions G=N.Q with N=C3×Dic5 and Q=C8
extensionφ:Q→Out NdρLabelID
(C3×Dic5).1C8 = D5×C3⋊C16φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).1C8480,7
(C3×Dic5).2C8 = C40.51D6φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).2C8480,10
(C3×Dic5).3C8 = C3×C80⋊C2φ: C8/C4C2 ⊆ Out C3×Dic52402(C3xDic5).3C8480,76
(C3×Dic5).4C8 = C24.F5φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).4C8480,294
(C3×Dic5).5C8 = C120.C4φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).5C8480,295
(C3×Dic5).6C8 = C3×D5⋊C16φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).6C8480,269
(C3×Dic5).7C8 = C3×C8.F5φ: C8/C4C2 ⊆ Out C3×Dic52404(C3xDic5).7C8480,270
(C3×Dic5).8C8 = D5×C48φ: trivial image2402(C3xDic5).8C8480,75

׿
×
𝔽