Extensions 1→N→G→Q→1 with N=C3 and Q=Dic54D4

Direct product G=N×Q with N=C3 and Q=Dic54D4
dρLabelID
C3×Dic54D4240C3xDic5:4D4480,674

Semidirect products G=N:Q with N=C3 and Q=Dic54D4
extensionφ:Q→Aut NdρLabelID
C31(Dic54D4) = Dic54D12φ: Dic54D4/C4×Dic5C2 ⊆ Aut C3240C3:1(Dic5:4D4)480,481
C32(Dic54D4) = Dic1514D4φ: Dic54D4/C10.D4C2 ⊆ Aut C3240C3:2(Dic5:4D4)480,482
C33(Dic54D4) = Dic159D4φ: Dic54D4/D10⋊C4C2 ⊆ Aut C3240C3:3(Dic5:4D4)480,518
C34(Dic54D4) = Dic1519D4φ: Dic54D4/C5×C22⋊C4C2 ⊆ Aut C3240C3:4(Dic5:4D4)480,846
C35(Dic54D4) = D6⋊(C4×D5)φ: Dic54D4/C2×C4×D5C2 ⊆ Aut C3240C3:5(Dic5:4D4)480,516
C36(Dic54D4) = C1526(C4×D4)φ: Dic54D4/C22×Dic5C2 ⊆ Aut C3240C3:6(Dic5:4D4)480,628
C37(Dic54D4) = Dic1516D4φ: Dic54D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:7(Dic5:4D4)480,635


׿
×
𝔽