Extensions 1→N→G→Q→1 with N=C3xC8:D5 and Q=C2

Direct product G=NxQ with N=C3xC8:D5 and Q=C2
dρLabelID
C6xC8:D5240C6xC8:D5480,693

Semidirect products G=N:Q with N=C3xC8:D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xC8:D5):1C2 = C24:D10φ: C2/C1C2 ⊆ Out C3xC8:D51204+(C3xC8:D5):1C2480,325
(C3xC8:D5):2C2 = Dic60:C2φ: C2/C1C2 ⊆ Out C3xC8:D52404-(C3xC8:D5):2C2480,336
(C3xC8:D5):3C2 = D24:D5φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):3C2480,326
(C3xC8:D5):4C2 = C24.2D10φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):4C2480,337
(C3xC8:D5):5C2 = C3xD40:C2φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):5C2480,707
(C3xC8:D5):6C2 = C3xSD16:D5φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):6C2480,708
(C3xC8:D5):7C2 = S3xC8:D5φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):7C2480,321
(C3xC8:D5):8C2 = C40:D6φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):8C2480,322
(C3xC8:D5):9C2 = C40.55D6φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):9C2480,343
(C3xC8:D5):10C2 = C40.35D6φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):10C2480,344
(C3xC8:D5):11C2 = C3xD8:D5φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):11C2480,704
(C3xC8:D5):12C2 = C3xQ16:D5φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):12C2480,711
(C3xC8:D5):13C2 = C3xD5xM4(2)φ: C2/C1C2 ⊆ Out C3xC8:D51204(C3xC8:D5):13C2480,699
(C3xC8:D5):14C2 = C3xD20.2C4φ: C2/C1C2 ⊆ Out C3xC8:D52404(C3xC8:D5):14C2480,700
(C3xC8:D5):15C2 = C3xD20.3C4φ: trivial image2402(C3xC8:D5):15C2480,694


׿
x
:
Z
F
o
wr
Q
<