Copied to
clipboard

G = C3×D8⋊D5order 480 = 25·3·5

Direct product of C3 and D8⋊D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D8⋊D5, C2417D10, C12029C22, C60.191C23, C82(C6×D5), C404(C2×C6), D4⋊D52C6, D82(C3×D5), (C3×D8)⋊6D5, D42(C6×D5), (C5×D8)⋊4C6, (D4×D5)⋊2C6, C8⋊D53C6, C40⋊C23C6, D4.D51C6, (C3×D4)⋊17D10, D42D51C6, (C15×D8)⋊11C2, (C6×D5).71D4, D20.1(C2×C6), C10.28(C6×D4), C6.182(D4×D5), C1529(C8⋊C22), Dic101(C2×C6), D10.13(C3×D4), C30.341(C2×D4), C20.2(C22×C6), (D4×C15)⋊17C22, Dic5.16(C3×D4), (C3×Dic5).77D4, (D5×C12).76C22, (C3×D20).30C22, C12.191(C22×D5), (C3×Dic10)⋊16C22, (C3×D4×D5)⋊9C2, C4.2(D5×C2×C6), C52(C3×C8⋊C22), C2.16(C3×D4×D5), C52C81(C2×C6), (C5×D4)⋊2(C2×C6), (C3×D4⋊D5)⋊10C2, (C3×D4.D5)⋊9C2, (C4×D5).1(C2×C6), (C3×D42D5)⋊8C2, (C3×C8⋊D5)⋊11C2, (C3×C40⋊C2)⋊11C2, (C3×C52C8)⋊23C22, SmallGroup(480,704)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D8⋊D5
C1C5C10C20C60D5×C12C3×D4×D5 — C3×D8⋊D5
C5C10C20 — C3×D8⋊D5
C1C6C12C3×D8

Generators and relations for C3×D8⋊D5
 G = < a,b,c,d,e | a3=b8=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, ebe=b5, cd=dc, ce=ec, ede=d-1 >

Subgroups: 544 in 136 conjugacy classes, 54 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C12, C12, C2×C6, C15, M4(2), D8, D8, SD16, C2×D4, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C24, C24, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C3×D5, C30, C30, C8⋊C22, C52C8, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C5×D4, C22×D5, C3×M4(2), C3×D8, C3×D8, C3×SD16, C6×D4, C3×C4○D4, C3×Dic5, C3×Dic5, C60, C6×D5, C6×D5, C2×C30, C8⋊D5, C40⋊C2, D4⋊D5, D4.D5, C5×D8, D4×D5, D42D5, C3×C8⋊C22, C3×C52C8, C120, C3×Dic10, D5×C12, C3×D20, C6×Dic5, C3×C5⋊D4, D4×C15, D5×C2×C6, D8⋊D5, C3×C8⋊D5, C3×C40⋊C2, C3×D4⋊D5, C3×D4.D5, C15×D8, C3×D4×D5, C3×D42D5, C3×D8⋊D5
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, C2×D4, D10, C3×D4, C22×C6, C3×D5, C8⋊C22, C22×D5, C6×D4, C6×D5, D4×D5, C3×C8⋊C22, D5×C2×C6, D8⋊D5, C3×D4×D5, C3×D8⋊D5

Smallest permutation representation of C3×D8⋊D5
On 120 points
Generators in S120
(1 104 79)(2 97 80)(3 98 73)(4 99 74)(5 100 75)(6 101 76)(7 102 77)(8 103 78)(9 31 108)(10 32 109)(11 25 110)(12 26 111)(13 27 112)(14 28 105)(15 29 106)(16 30 107)(17 94 115)(18 95 116)(19 96 117)(20 89 118)(21 90 119)(22 91 120)(23 92 113)(24 93 114)(33 56 69)(34 49 70)(35 50 71)(36 51 72)(37 52 65)(38 53 66)(39 54 67)(40 55 68)(41 57 85)(42 58 86)(43 59 87)(44 60 88)(45 61 81)(46 62 82)(47 63 83)(48 64 84)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(1 3)(4 8)(5 7)(9 13)(10 12)(14 16)(17 23)(18 22)(19 21)(26 32)(27 31)(28 30)(33 37)(34 36)(38 40)(41 45)(42 44)(46 48)(49 51)(52 56)(53 55)(57 61)(58 60)(62 64)(65 69)(66 68)(70 72)(73 79)(74 78)(75 77)(81 85)(82 84)(86 88)(90 96)(91 95)(92 94)(98 104)(99 103)(100 102)(105 107)(108 112)(109 111)(113 115)(116 120)(117 119)
(1 109 23 42 53)(2 110 24 43 54)(3 111 17 44 55)(4 112 18 45 56)(5 105 19 46 49)(6 106 20 47 50)(7 107 21 48 51)(8 108 22 41 52)(9 91 57 65 103)(10 92 58 66 104)(11 93 59 67 97)(12 94 60 68 98)(13 95 61 69 99)(14 96 62 70 100)(15 89 63 71 101)(16 90 64 72 102)(25 114 87 39 80)(26 115 88 40 73)(27 116 81 33 74)(28 117 82 34 75)(29 118 83 35 76)(30 119 84 36 77)(31 120 85 37 78)(32 113 86 38 79)
(1 53)(2 50)(3 55)(4 52)(5 49)(6 54)(7 51)(8 56)(9 61)(10 58)(11 63)(12 60)(13 57)(14 62)(15 59)(16 64)(18 22)(20 24)(25 83)(26 88)(27 85)(28 82)(29 87)(30 84)(31 81)(32 86)(33 78)(34 75)(35 80)(36 77)(37 74)(38 79)(39 76)(40 73)(41 112)(42 109)(43 106)(44 111)(45 108)(46 105)(47 110)(48 107)(65 99)(66 104)(67 101)(68 98)(69 103)(70 100)(71 97)(72 102)(89 93)(91 95)(114 118)(116 120)

G:=sub<Sym(120)| (1,104,79)(2,97,80)(3,98,73)(4,99,74)(5,100,75)(6,101,76)(7,102,77)(8,103,78)(9,31,108)(10,32,109)(11,25,110)(12,26,111)(13,27,112)(14,28,105)(15,29,106)(16,30,107)(17,94,115)(18,95,116)(19,96,117)(20,89,118)(21,90,119)(22,91,120)(23,92,113)(24,93,114)(33,56,69)(34,49,70)(35,50,71)(36,51,72)(37,52,65)(38,53,66)(39,54,67)(40,55,68)(41,57,85)(42,58,86)(43,59,87)(44,60,88)(45,61,81)(46,62,82)(47,63,83)(48,64,84), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,3)(4,8)(5,7)(9,13)(10,12)(14,16)(17,23)(18,22)(19,21)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,61)(58,60)(62,64)(65,69)(66,68)(70,72)(73,79)(74,78)(75,77)(81,85)(82,84)(86,88)(90,96)(91,95)(92,94)(98,104)(99,103)(100,102)(105,107)(108,112)(109,111)(113,115)(116,120)(117,119), (1,109,23,42,53)(2,110,24,43,54)(3,111,17,44,55)(4,112,18,45,56)(5,105,19,46,49)(6,106,20,47,50)(7,107,21,48,51)(8,108,22,41,52)(9,91,57,65,103)(10,92,58,66,104)(11,93,59,67,97)(12,94,60,68,98)(13,95,61,69,99)(14,96,62,70,100)(15,89,63,71,101)(16,90,64,72,102)(25,114,87,39,80)(26,115,88,40,73)(27,116,81,33,74)(28,117,82,34,75)(29,118,83,35,76)(30,119,84,36,77)(31,120,85,37,78)(32,113,86,38,79), (1,53)(2,50)(3,55)(4,52)(5,49)(6,54)(7,51)(8,56)(9,61)(10,58)(11,63)(12,60)(13,57)(14,62)(15,59)(16,64)(18,22)(20,24)(25,83)(26,88)(27,85)(28,82)(29,87)(30,84)(31,81)(32,86)(33,78)(34,75)(35,80)(36,77)(37,74)(38,79)(39,76)(40,73)(41,112)(42,109)(43,106)(44,111)(45,108)(46,105)(47,110)(48,107)(65,99)(66,104)(67,101)(68,98)(69,103)(70,100)(71,97)(72,102)(89,93)(91,95)(114,118)(116,120)>;

G:=Group( (1,104,79)(2,97,80)(3,98,73)(4,99,74)(5,100,75)(6,101,76)(7,102,77)(8,103,78)(9,31,108)(10,32,109)(11,25,110)(12,26,111)(13,27,112)(14,28,105)(15,29,106)(16,30,107)(17,94,115)(18,95,116)(19,96,117)(20,89,118)(21,90,119)(22,91,120)(23,92,113)(24,93,114)(33,56,69)(34,49,70)(35,50,71)(36,51,72)(37,52,65)(38,53,66)(39,54,67)(40,55,68)(41,57,85)(42,58,86)(43,59,87)(44,60,88)(45,61,81)(46,62,82)(47,63,83)(48,64,84), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (1,3)(4,8)(5,7)(9,13)(10,12)(14,16)(17,23)(18,22)(19,21)(26,32)(27,31)(28,30)(33,37)(34,36)(38,40)(41,45)(42,44)(46,48)(49,51)(52,56)(53,55)(57,61)(58,60)(62,64)(65,69)(66,68)(70,72)(73,79)(74,78)(75,77)(81,85)(82,84)(86,88)(90,96)(91,95)(92,94)(98,104)(99,103)(100,102)(105,107)(108,112)(109,111)(113,115)(116,120)(117,119), (1,109,23,42,53)(2,110,24,43,54)(3,111,17,44,55)(4,112,18,45,56)(5,105,19,46,49)(6,106,20,47,50)(7,107,21,48,51)(8,108,22,41,52)(9,91,57,65,103)(10,92,58,66,104)(11,93,59,67,97)(12,94,60,68,98)(13,95,61,69,99)(14,96,62,70,100)(15,89,63,71,101)(16,90,64,72,102)(25,114,87,39,80)(26,115,88,40,73)(27,116,81,33,74)(28,117,82,34,75)(29,118,83,35,76)(30,119,84,36,77)(31,120,85,37,78)(32,113,86,38,79), (1,53)(2,50)(3,55)(4,52)(5,49)(6,54)(7,51)(8,56)(9,61)(10,58)(11,63)(12,60)(13,57)(14,62)(15,59)(16,64)(18,22)(20,24)(25,83)(26,88)(27,85)(28,82)(29,87)(30,84)(31,81)(32,86)(33,78)(34,75)(35,80)(36,77)(37,74)(38,79)(39,76)(40,73)(41,112)(42,109)(43,106)(44,111)(45,108)(46,105)(47,110)(48,107)(65,99)(66,104)(67,101)(68,98)(69,103)(70,100)(71,97)(72,102)(89,93)(91,95)(114,118)(116,120) );

G=PermutationGroup([[(1,104,79),(2,97,80),(3,98,73),(4,99,74),(5,100,75),(6,101,76),(7,102,77),(8,103,78),(9,31,108),(10,32,109),(11,25,110),(12,26,111),(13,27,112),(14,28,105),(15,29,106),(16,30,107),(17,94,115),(18,95,116),(19,96,117),(20,89,118),(21,90,119),(22,91,120),(23,92,113),(24,93,114),(33,56,69),(34,49,70),(35,50,71),(36,51,72),(37,52,65),(38,53,66),(39,54,67),(40,55,68),(41,57,85),(42,58,86),(43,59,87),(44,60,88),(45,61,81),(46,62,82),(47,63,83),(48,64,84)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(1,3),(4,8),(5,7),(9,13),(10,12),(14,16),(17,23),(18,22),(19,21),(26,32),(27,31),(28,30),(33,37),(34,36),(38,40),(41,45),(42,44),(46,48),(49,51),(52,56),(53,55),(57,61),(58,60),(62,64),(65,69),(66,68),(70,72),(73,79),(74,78),(75,77),(81,85),(82,84),(86,88),(90,96),(91,95),(92,94),(98,104),(99,103),(100,102),(105,107),(108,112),(109,111),(113,115),(116,120),(117,119)], [(1,109,23,42,53),(2,110,24,43,54),(3,111,17,44,55),(4,112,18,45,56),(5,105,19,46,49),(6,106,20,47,50),(7,107,21,48,51),(8,108,22,41,52),(9,91,57,65,103),(10,92,58,66,104),(11,93,59,67,97),(12,94,60,68,98),(13,95,61,69,99),(14,96,62,70,100),(15,89,63,71,101),(16,90,64,72,102),(25,114,87,39,80),(26,115,88,40,73),(27,116,81,33,74),(28,117,82,34,75),(29,118,83,35,76),(30,119,84,36,77),(31,120,85,37,78),(32,113,86,38,79)], [(1,53),(2,50),(3,55),(4,52),(5,49),(6,54),(7,51),(8,56),(9,61),(10,58),(11,63),(12,60),(13,57),(14,62),(15,59),(16,64),(18,22),(20,24),(25,83),(26,88),(27,85),(28,82),(29,87),(30,84),(31,81),(32,86),(33,78),(34,75),(35,80),(36,77),(37,74),(38,79),(39,76),(40,73),(41,112),(42,109),(43,106),(44,111),(45,108),(46,105),(47,110),(48,107),(65,99),(66,104),(67,101),(68,98),(69,103),(70,100),(71,97),(72,102),(89,93),(91,95),(114,118),(116,120)]])

75 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C5A5B6A6B6C6D6E6F6G6H6I6J8A8B10A10B10C10D10E10F12A12B12C12D12E12F15A15B15C15D20A20B24A24B24C24D30A30B30C30D30E···30L40A40B40C40D60A60B60C60D120A···120H
order1222223344455666666666688101010101010121212121212151515152020242424243030303030···304040404060606060120···120
size1144102011210202211444410102020420228888221010202022224444202022228···8444444444···4

75 irreducible representations

dim11111111111111112222222222444444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D4D4D5D10D10C3×D4C3×D4C3×D5C6×D5C6×D5C8⋊C22D4×D5C3×C8⋊C22D8⋊D5C3×D4×D5C3×D8⋊D5
kernelC3×D8⋊D5C3×C8⋊D5C3×C40⋊C2C3×D4⋊D5C3×D4.D5C15×D8C3×D4×D5C3×D42D5D8⋊D5C8⋊D5C40⋊C2D4⋊D5D4.D5C5×D8D4×D5D42D5C3×Dic5C6×D5C3×D8C24C3×D4Dic5D10D8C8D4C15C6C5C3C2C1
# reps11111111222222221122422448122448

Matrix representation of C3×D8⋊D5 in GL4(𝔽241) generated by

15000
01500
00150
00015
,
00173151
0017322
5522515144
17071211226
,
1077
012340
002400
000240
,
18924000
1000
00240240
00191190
,
18924000
525200
000189
001900
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[0,0,55,170,0,0,225,71,173,173,15,211,151,22,144,226],[1,0,0,0,0,1,0,0,7,234,240,0,7,0,0,240],[189,1,0,0,240,0,0,0,0,0,240,191,0,0,240,190],[189,52,0,0,240,52,0,0,0,0,0,190,0,0,189,0] >;

C3×D8⋊D5 in GAP, Magma, Sage, TeX

C_3\times D_8\rtimes D_5
% in TeX

G:=Group("C3xD8:D5");
// GroupNames label

G:=SmallGroup(480,704);
// by ID

G=gap.SmallGroup(480,704);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,1094,303,1271,648,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^8=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,e*b*e=b^5,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽