Copied to
clipboard

G = D24⋊D5order 480 = 25·3·5

2nd semidirect product of D24 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D242D5, C4010D6, C242D10, D128D10, C12011C22, D10.13D12, C60.119C23, Dic5.15D12, D60.31C22, Dic3017C22, C82(S3×D5), C52C82D6, C6.4(D4×D5), (C5×D24)⋊4C2, C8⋊D53S3, C52(C8⋊D6), (C6×D5).2D4, (C4×D5).2D6, C30.4(C2×D4), C2.9(D5×D12), C24⋊D59C2, (D5×D12)⋊10C2, C31(D8⋊D5), C5⋊D2411C2, C152(C8⋊C22), C10.4(C2×D12), D125D58C2, (C3×Dic5).2D4, D12.D510C2, (C5×D12)⋊15C22, C20.67(C22×S3), (D5×C12).25C22, C12.142(C22×D5), C4.67(C2×S3×D5), (C3×C8⋊D5)⋊3C2, (C3×C52C8)⋊16C22, SmallGroup(480,326)

Series: Derived Chief Lower central Upper central

C1C60 — D24⋊D5
C1C5C15C30C60D5×C12D5×D12 — D24⋊D5
C15C30C60 — D24⋊D5
C1C2C4C8

Generators and relations for D24⋊D5
 G = < a,b,c,d | a24=b2=c5=d2=1, bab=a-1, ac=ca, dad=a13, bc=cb, dbd=a12b, dcd=c-1 >

Subgroups: 988 in 136 conjugacy classes, 40 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, C24, C24, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C8⋊C22, C52C8, C40, Dic10, C4×D5, D20, C2×Dic5, C5⋊D4, C5×D4, C22×D5, C24⋊C2, D24, D24, C3×M4(2), C2×D12, C4○D12, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C8⋊D5, C40⋊C2, D4⋊D5, D4.D5, C5×D8, D4×D5, D42D5, C8⋊D6, C3×C52C8, C120, S3×Dic5, C15⋊D4, C5⋊D12, D5×C12, C5×D12, Dic30, D60, C2×S3×D5, D8⋊D5, C5⋊D24, D12.D5, C3×C8⋊D5, C5×D24, C24⋊D5, D125D5, D5×D12, D24⋊D5
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C8⋊C22, C22×D5, C2×D12, S3×D5, D4×D5, C8⋊D6, C2×S3×D5, D8⋊D5, D5×D12, D24⋊D5

Smallest permutation representation of D24⋊D5
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 24)(20 23)(21 22)(25 26)(27 48)(28 47)(29 46)(30 45)(31 44)(32 43)(33 42)(34 41)(35 40)(36 39)(37 38)(49 52)(50 51)(53 72)(54 71)(55 70)(56 69)(57 68)(58 67)(59 66)(60 65)(61 64)(62 63)(73 80)(74 79)(75 78)(76 77)(81 96)(82 95)(83 94)(84 93)(85 92)(86 91)(87 90)(88 89)(97 102)(98 101)(99 100)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)
(1 92 115 66 41)(2 93 116 67 42)(3 94 117 68 43)(4 95 118 69 44)(5 96 119 70 45)(6 73 120 71 46)(7 74 97 72 47)(8 75 98 49 48)(9 76 99 50 25)(10 77 100 51 26)(11 78 101 52 27)(12 79 102 53 28)(13 80 103 54 29)(14 81 104 55 30)(15 82 105 56 31)(16 83 106 57 32)(17 84 107 58 33)(18 85 108 59 34)(19 86 109 60 35)(20 87 110 61 36)(21 88 111 62 37)(22 89 112 63 38)(23 90 113 64 39)(24 91 114 65 40)
(1 41)(2 30)(3 43)(4 32)(5 45)(6 34)(7 47)(8 36)(9 25)(10 38)(11 27)(12 40)(13 29)(14 42)(15 31)(16 44)(17 33)(18 46)(19 35)(20 48)(21 37)(22 26)(23 39)(24 28)(49 87)(50 76)(51 89)(52 78)(53 91)(54 80)(55 93)(56 82)(57 95)(58 84)(59 73)(60 86)(61 75)(62 88)(63 77)(64 90)(65 79)(66 92)(67 81)(68 94)(69 83)(70 96)(71 85)(72 74)(98 110)(100 112)(102 114)(104 116)(106 118)(108 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,26)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)(37,38)(49,52)(50,51)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(73,80)(74,79)(75,78)(76,77)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,102)(98,101)(99,100)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,92,115,66,41)(2,93,116,67,42)(3,94,117,68,43)(4,95,118,69,44)(5,96,119,70,45)(6,73,120,71,46)(7,74,97,72,47)(8,75,98,49,48)(9,76,99,50,25)(10,77,100,51,26)(11,78,101,52,27)(12,79,102,53,28)(13,80,103,54,29)(14,81,104,55,30)(15,82,105,56,31)(16,83,106,57,32)(17,84,107,58,33)(18,85,108,59,34)(19,86,109,60,35)(20,87,110,61,36)(21,88,111,62,37)(22,89,112,63,38)(23,90,113,64,39)(24,91,114,65,40), (1,41)(2,30)(3,43)(4,32)(5,45)(6,34)(7,47)(8,36)(9,25)(10,38)(11,27)(12,40)(13,29)(14,42)(15,31)(16,44)(17,33)(18,46)(19,35)(20,48)(21,37)(22,26)(23,39)(24,28)(49,87)(50,76)(51,89)(52,78)(53,91)(54,80)(55,93)(56,82)(57,95)(58,84)(59,73)(60,86)(61,75)(62,88)(63,77)(64,90)(65,79)(66,92)(67,81)(68,94)(69,83)(70,96)(71,85)(72,74)(98,110)(100,112)(102,114)(104,116)(106,118)(108,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,24)(20,23)(21,22)(25,26)(27,48)(28,47)(29,46)(30,45)(31,44)(32,43)(33,42)(34,41)(35,40)(36,39)(37,38)(49,52)(50,51)(53,72)(54,71)(55,70)(56,69)(57,68)(58,67)(59,66)(60,65)(61,64)(62,63)(73,80)(74,79)(75,78)(76,77)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,90)(88,89)(97,102)(98,101)(99,100)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,92,115,66,41)(2,93,116,67,42)(3,94,117,68,43)(4,95,118,69,44)(5,96,119,70,45)(6,73,120,71,46)(7,74,97,72,47)(8,75,98,49,48)(9,76,99,50,25)(10,77,100,51,26)(11,78,101,52,27)(12,79,102,53,28)(13,80,103,54,29)(14,81,104,55,30)(15,82,105,56,31)(16,83,106,57,32)(17,84,107,58,33)(18,85,108,59,34)(19,86,109,60,35)(20,87,110,61,36)(21,88,111,62,37)(22,89,112,63,38)(23,90,113,64,39)(24,91,114,65,40), (1,41)(2,30)(3,43)(4,32)(5,45)(6,34)(7,47)(8,36)(9,25)(10,38)(11,27)(12,40)(13,29)(14,42)(15,31)(16,44)(17,33)(18,46)(19,35)(20,48)(21,37)(22,26)(23,39)(24,28)(49,87)(50,76)(51,89)(52,78)(53,91)(54,80)(55,93)(56,82)(57,95)(58,84)(59,73)(60,86)(61,75)(62,88)(63,77)(64,90)(65,79)(66,92)(67,81)(68,94)(69,83)(70,96)(71,85)(72,74)(98,110)(100,112)(102,114)(104,116)(106,118)(108,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,24),(20,23),(21,22),(25,26),(27,48),(28,47),(29,46),(30,45),(31,44),(32,43),(33,42),(34,41),(35,40),(36,39),(37,38),(49,52),(50,51),(53,72),(54,71),(55,70),(56,69),(57,68),(58,67),(59,66),(60,65),(61,64),(62,63),(73,80),(74,79),(75,78),(76,77),(81,96),(82,95),(83,94),(84,93),(85,92),(86,91),(87,90),(88,89),(97,102),(98,101),(99,100),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112)], [(1,92,115,66,41),(2,93,116,67,42),(3,94,117,68,43),(4,95,118,69,44),(5,96,119,70,45),(6,73,120,71,46),(7,74,97,72,47),(8,75,98,49,48),(9,76,99,50,25),(10,77,100,51,26),(11,78,101,52,27),(12,79,102,53,28),(13,80,103,54,29),(14,81,104,55,30),(15,82,105,56,31),(16,83,106,57,32),(17,84,107,58,33),(18,85,108,59,34),(19,86,109,60,35),(20,87,110,61,36),(21,88,111,62,37),(22,89,112,63,38),(23,90,113,64,39),(24,91,114,65,40)], [(1,41),(2,30),(3,43),(4,32),(5,45),(6,34),(7,47),(8,36),(9,25),(10,38),(11,27),(12,40),(13,29),(14,42),(15,31),(16,44),(17,33),(18,46),(19,35),(20,48),(21,37),(22,26),(23,39),(24,28),(49,87),(50,76),(51,89),(52,78),(53,91),(54,80),(55,93),(56,82),(57,95),(58,84),(59,73),(60,86),(61,75),(62,88),(63,77),(64,90),(65,79),(66,92),(67,81),(68,94),(69,83),(70,96),(71,85),(72,74),(98,110),(100,112),(102,114),(104,116),(106,118),(108,120)]])

51 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B8A8B10A10B10C10D10E10F12A12B12C15A15B20A20B24A24B24C24D30A30B40A40B40C40D60A60B60C60D120A···120H
order1222223444556688101010101010121212151520202424242430304040404060606060120···120
size11101212602210602222042022242424242220444444202044444444444···4

51 irreducible representations

dim111111112222222222244444444
type+++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D10D10D12D12C8⋊C22S3×D5D4×D5C8⋊D6C2×S3×D5D8⋊D5D5×D12D24⋊D5
kernelD24⋊D5C5⋊D24D12.D5C3×C8⋊D5C5×D24C24⋊D5D125D5D5×D12C8⋊D5C3×Dic5C6×D5D24C52C8C40C4×D5C24D12Dic5D10C15C8C6C5C4C3C2C1
# reps111111111112111242212222448

Matrix representation of D24⋊D5 in GL4(𝔽241) generated by

2204186174
372396755
55675730
174186211184
,
23937184211
20423057
1861742204
675537239
,
0100
24018900
0001
00240189
,
0100
1000
0001
0010
G:=sub<GL(4,GF(241))| [2,37,55,174,204,239,67,186,186,67,57,211,174,55,30,184],[239,204,186,67,37,2,174,55,184,30,2,37,211,57,204,239],[0,240,0,0,1,189,0,0,0,0,0,240,0,0,1,189],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

D24⋊D5 in GAP, Magma, Sage, TeX

D_{24}\rtimes D_5
% in TeX

G:=Group("D24:D5");
// GroupNames label

G:=SmallGroup(480,326);
// by ID

G=gap.SmallGroup(480,326);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,422,135,142,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^24=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^13,b*c=c*b,d*b*d=a^12*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽