Extensions 1→N→G→Q→1 with N=C20:D6 and Q=C2

Direct product G=NxQ with N=C20:D6 and Q=C2
dρLabelID
C2xC20:D6120C2xC20:D6480,1089

Semidirect products G=N:Q with N=C20:D6 and Q=C2
extensionφ:Q→Out NdρLabelID
C20:D6:1C2 = D15:D8φ: C2/C1C2 ⊆ Out C20:D61208+C20:D6:1C2480,557
C20:D6:2C2 = D30.8D4φ: C2/C1C2 ⊆ Out C20:D61208-C20:D6:2C2480,558
C20:D6:3C2 = D60:C22φ: C2/C1C2 ⊆ Out C20:D61208+C20:D6:3C2480,582
C20:D6:4C2 = S3xD4xD5φ: C2/C1C2 ⊆ Out C20:D6608+C20:D6:4C2480,1097
C20:D6:5C2 = D20:13D6φ: C2/C1C2 ⊆ Out C20:D61208-C20:D6:5C2480,1101
C20:D6:6C2 = D20:16D6φ: C2/C1C2 ⊆ Out C20:D61208-C20:D6:6C2480,1110
C20:D6:7C2 = D20:17D6φ: C2/C1C2 ⊆ Out C20:D61208+C20:D6:7C2480,1111
C20:D6:8C2 = C40:5D6φ: C2/C1C2 ⊆ Out C20:D61204C20:D6:8C2480,332
C20:D6:9C2 = D24:6D5φ: C2/C1C2 ⊆ Out C20:D61204C20:D6:9C2480,333
C20:D6:10C2 = C40:8D6φ: C2/C1C2 ⊆ Out C20:D61204C20:D6:10C2480,334
C20:D6:11C2 = D20:25D6φ: C2/C1C2 ⊆ Out C20:D61204C20:D6:11C2480,1093
C20:D6:12C2 = D20:26D6φ: C2/C1C2 ⊆ Out C20:D61204C20:D6:12C2480,1094
C20:D6:13C2 = D20:24D6φ: trivial image1204C20:D6:13C2480,1092

Non-split extensions G=N.Q with N=C20:D6 and Q=C2
extensionφ:Q→Out NdρLabelID
C20:D6.1C2 = D15:SD16φ: C2/C1C2 ⊆ Out C20:D61208-C20:D6.1C2480,581
C20:D6.2C2 = C40:14D6φ: C2/C1C2 ⊆ Out C20:D61204C20:D6.2C2480,331

׿
x
:
Z
F
o
wr
Q
<