# Extensions 1→N→G→Q→1 with N=C2×D5×Dic3 and Q=C2

Direct product G=N×Q with N=C2×D5×Dic3 and Q=C2
dρLabelID
C22×D5×Dic3240C2^2xD5xDic3480,1112

Semidirect products G=N:Q with N=C2×D5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D5×Dic3)⋊1C2 = Dic34D20φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):1C2480,471
(C2×D5×Dic3)⋊2C2 = Dic1513D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):2C2480,472
(C2×D5×Dic3)⋊3C2 = (C6×D5).D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):3C2480,483
(C2×D5×Dic3)⋊4C2 = Dic15⋊D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):4C2480,484
(C2×D5×Dic3)⋊5C2 = Dic3⋊D20φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):5C2480,485
(C2×D5×Dic3)⋊6C2 = D10.16D12φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):6C2480,489
(C2×D5×Dic3)⋊7C2 = D10.17D12φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):7C2480,490
(C2×D5×Dic3)⋊8C2 = Dic3×D20φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):8C2480,501
(C2×D5×Dic3)⋊9C2 = D208Dic3φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):9C2480,510
(C2×D5×Dic3)⋊10C2 = C1517(C4×D4)φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):10C2480,517
(C2×D5×Dic3)⋊11C2 = Dic159D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):11C2480,518
(C2×D5×Dic3)⋊12C2 = D5×D6⋊C4φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3):12C2480,547
(C2×D5×Dic3)⋊13C2 = D5×C6.D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3):13C2480,623
(C2×D5×Dic3)⋊14C2 = C23.17(S3×D5)φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):14C2480,624
(C2×D5×Dic3)⋊15C2 = (C6×D5)⋊D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):15C2480,625
(C2×D5×Dic3)⋊16C2 = Dic153D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):16C2480,626
(C2×D5×Dic3)⋊17C2 = Dic3×C5⋊D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):17C2480,629
(C2×D5×Dic3)⋊18C2 = Dic1516D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):18C2480,635
(C2×D5×Dic3)⋊19C2 = C2×D205S3φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):19C2480,1074
(C2×D5×Dic3)⋊20C2 = C2×D20⋊S3φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):20C2480,1075
(C2×D5×Dic3)⋊21C2 = D5×D42S3φ: C2/C1C2 ⊆ Out C2×D5×Dic31208-(C2xD5xDic3):21C2480,1098
(C2×D5×Dic3)⋊22C2 = C2×Dic5.D6φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):22C2480,1113
(C2×D5×Dic3)⋊23C2 = C2×C30.C23φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3):23C2480,1114
(C2×D5×Dic3)⋊24C2 = C2×D5×C3⋊D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3):24C2480,1122
(C2×D5×Dic3)⋊25C2 = S3×C2×C4×D5φ: trivial image120(C2xD5xDic3):25C2480,1086

Non-split extensions G=N.Q with N=C2×D5×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D5×Dic3).1C2 = D5×Dic3⋊C4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).1C2480,468
(C2×D5×Dic3).2C2 = (D5×Dic3)⋊C4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).2C2480,469
(C2×D5×Dic3).3C2 = D10.19(C4×S3)φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).3C2480,470
(C2×D5×Dic3).4C2 = D5×C4⋊Dic3φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).4C2480,488
(C2×D5×Dic3).5C2 = D101Dic6φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).5C2480,497
(C2×D5×Dic3).6C2 = D102Dic6φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).6C2480,498
(C2×D5×Dic3).7C2 = Dic15.D4φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).7C2480,506
(C2×D5×Dic3).8C2 = D104Dic6φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).8C2480,507
(C2×D5×Dic3).9C2 = C2×D5×Dic6φ: C2/C1C2 ⊆ Out C2×D5×Dic3240(C2xD5xDic3).9C2480,1073
(C2×D5×Dic3).10C2 = D10.20D12φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3).10C2480,243
(C2×D5×Dic3).11C2 = C2×Dic3×F5φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3).11C2480,998
(C2×D5×Dic3).12C2 = C22⋊F5.S3φ: C2/C1C2 ⊆ Out C2×D5×Dic31208-(C2xD5xDic3).12C2480,999
(C2×D5×Dic3).13C2 = C2×Dic3⋊F5φ: C2/C1C2 ⊆ Out C2×D5×Dic3120(C2xD5xDic3).13C2480,1001
(C2×D5×Dic3).14C2 = C4×D5×Dic3φ: trivial image240(C2xD5xDic3).14C2480,467

׿
×
𝔽