extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D5×Dic3)⋊1C2 = Dic3⋊4D20 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):1C2 | 480,471 |
(C2×D5×Dic3)⋊2C2 = Dic15⋊13D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):2C2 | 480,472 |
(C2×D5×Dic3)⋊3C2 = (C6×D5).D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):3C2 | 480,483 |
(C2×D5×Dic3)⋊4C2 = Dic15⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):4C2 | 480,484 |
(C2×D5×Dic3)⋊5C2 = Dic3⋊D20 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):5C2 | 480,485 |
(C2×D5×Dic3)⋊6C2 = D10.16D12 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):6C2 | 480,489 |
(C2×D5×Dic3)⋊7C2 = D10.17D12 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):7C2 | 480,490 |
(C2×D5×Dic3)⋊8C2 = Dic3×D20 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):8C2 | 480,501 |
(C2×D5×Dic3)⋊9C2 = D20⋊8Dic3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):9C2 | 480,510 |
(C2×D5×Dic3)⋊10C2 = C15⋊17(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):10C2 | 480,517 |
(C2×D5×Dic3)⋊11C2 = Dic15⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):11C2 | 480,518 |
(C2×D5×Dic3)⋊12C2 = D5×D6⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3):12C2 | 480,547 |
(C2×D5×Dic3)⋊13C2 = D5×C6.D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3):13C2 | 480,623 |
(C2×D5×Dic3)⋊14C2 = C23.17(S3×D5) | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):14C2 | 480,624 |
(C2×D5×Dic3)⋊15C2 = (C6×D5)⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):15C2 | 480,625 |
(C2×D5×Dic3)⋊16C2 = Dic15⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):16C2 | 480,626 |
(C2×D5×Dic3)⋊17C2 = Dic3×C5⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):17C2 | 480,629 |
(C2×D5×Dic3)⋊18C2 = Dic15⋊16D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):18C2 | 480,635 |
(C2×D5×Dic3)⋊19C2 = C2×D20⋊5S3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):19C2 | 480,1074 |
(C2×D5×Dic3)⋊20C2 = C2×D20⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):20C2 | 480,1075 |
(C2×D5×Dic3)⋊21C2 = D5×D4⋊2S3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | 8- | (C2xD5xDic3):21C2 | 480,1098 |
(C2×D5×Dic3)⋊22C2 = C2×Dic5.D6 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):22C2 | 480,1113 |
(C2×D5×Dic3)⋊23C2 = C2×C30.C23 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3):23C2 | 480,1114 |
(C2×D5×Dic3)⋊24C2 = C2×D5×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3):24C2 | 480,1122 |
(C2×D5×Dic3)⋊25C2 = S3×C2×C4×D5 | φ: trivial image | 120 | | (C2xD5xDic3):25C2 | 480,1086 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D5×Dic3).1C2 = D5×Dic3⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).1C2 | 480,468 |
(C2×D5×Dic3).2C2 = (D5×Dic3)⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).2C2 | 480,469 |
(C2×D5×Dic3).3C2 = D10.19(C4×S3) | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).3C2 | 480,470 |
(C2×D5×Dic3).4C2 = D5×C4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).4C2 | 480,488 |
(C2×D5×Dic3).5C2 = D10⋊1Dic6 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).5C2 | 480,497 |
(C2×D5×Dic3).6C2 = D10⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).6C2 | 480,498 |
(C2×D5×Dic3).7C2 = Dic15.D4 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).7C2 | 480,506 |
(C2×D5×Dic3).8C2 = D10⋊4Dic6 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).8C2 | 480,507 |
(C2×D5×Dic3).9C2 = C2×D5×Dic6 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 240 | | (C2xD5xDic3).9C2 | 480,1073 |
(C2×D5×Dic3).10C2 = D10.20D12 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3).10C2 | 480,243 |
(C2×D5×Dic3).11C2 = C2×Dic3×F5 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3).11C2 | 480,998 |
(C2×D5×Dic3).12C2 = C22⋊F5.S3 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | 8- | (C2xD5xDic3).12C2 | 480,999 |
(C2×D5×Dic3).13C2 = C2×Dic3⋊F5 | φ: C2/C1 → C2 ⊆ Out C2×D5×Dic3 | 120 | | (C2xD5xDic3).13C2 | 480,1001 |
(C2×D5×Dic3).14C2 = C4×D5×Dic3 | φ: trivial image | 240 | | (C2xD5xDic3).14C2 | 480,467 |