Copied to
clipboard

G = C2xDic3:F5order 480 = 25·3·5

Direct product of C2 and Dic3:F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xDic3:F5, D10.4Dic6, C30:(C4:C4), C6:2(C4:F5), (C2xF5).8D6, (C6xD5).4Q8, D5:(Dic3:C4), C10:(Dic3:C4), (C2xDic3):4F5, (D5xDic3):6C4, Dic3:4(C2xF5), (C6xD5).31D4, (C10xDic3):6C4, Dic15:6(C2xC4), (C2xDic15):7C4, D10.27(C4xS3), D5.2(C2xDic6), (C22xF5).2S3, C6.20(C22xF5), C22.19(S3xF5), C30.20(C22xC4), (C22xD5).76D6, (C6xD5).32C23, (C6xF5).12C22, D10.15(C3:D4), D10.35(C22xS3), (D5xDic3).18C22, C3:3(C2xC4:F5), C15:2(C2xC4:C4), C5:(C2xDic3:C4), (C3xD5):(C4:C4), (C2xC6xF5).3C2, C2.22(C2xS3xF5), C10.20(S3xC2xC4), (C3xD5).5(C2xD4), D5.1(C2xC3:D4), (C2xC6).20(C2xF5), (C3xD5).4(C2xQ8), (C2xC30).15(C2xC4), (C2xC10).17(C4xS3), (C22xC3:F5).3C2, (C5xDic3):6(C2xC4), (C6xD5).25(C2xC4), (C2xD5xDic3).13C2, (D5xC2xC6).69C22, (C2xC3:F5).12C22, SmallGroup(480,1001)

Series: Derived Chief Lower central Upper central

C1C30 — C2xDic3:F5
C1C5C15C3xD5C6xD5C6xF5Dic3:F5 — C2xDic3:F5
C15C30 — C2xDic3:F5
C1C22

Generators and relations for C2xDic3:F5
 G = < a,b,c,d,e | a2=b6=d5=e4=1, c2=b3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d3 >

Subgroups: 884 in 184 conjugacy classes, 70 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, C6, C6, C6, C2xC4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C2xC6, C2xC6, C15, C4:C4, C22xC4, Dic5, C20, F5, D10, D10, C2xC10, C2xDic3, C2xDic3, C2xC12, C22xC6, C3xD5, C3xD5, C30, C30, C2xC4:C4, C4xD5, C2xDic5, C2xC20, C2xF5, C2xF5, C22xD5, Dic3:C4, C22xDic3, C22xC12, C5xDic3, Dic15, C3xF5, C3:F5, C6xD5, C6xD5, C2xC30, C4:F5, C2xC4xD5, C22xF5, C22xF5, C2xDic3:C4, D5xDic3, C10xDic3, C2xDic15, C6xF5, C6xF5, C2xC3:F5, C2xC3:F5, D5xC2xC6, C2xC4:F5, Dic3:F5, C2xD5xDic3, C2xC6xF5, C22xC3:F5, C2xDic3:F5
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, Q8, C23, D6, C4:C4, C22xC4, C2xD4, C2xQ8, F5, Dic6, C4xS3, C3:D4, C22xS3, C2xC4:C4, C2xF5, Dic3:C4, C2xDic6, S3xC2xC4, C2xC3:D4, C4:F5, C22xF5, C2xDic3:C4, S3xF5, C2xC4:F5, Dic3:F5, C2xS3xF5, C2xDic3:F5

Smallest permutation representation of C2xDic3:F5
On 120 points
Generators in S120
(1 59)(2 60)(3 55)(4 56)(5 57)(6 58)(7 109)(8 110)(9 111)(10 112)(11 113)(12 114)(13 105)(14 106)(15 107)(16 108)(17 103)(18 104)(19 101)(20 102)(21 97)(22 98)(23 99)(24 100)(25 91)(26 92)(27 93)(28 94)(29 95)(30 96)(31 69)(32 70)(33 71)(34 72)(35 67)(36 68)(37 65)(38 66)(39 61)(40 62)(41 63)(42 64)(43 76)(44 77)(45 78)(46 73)(47 74)(48 75)(49 82)(50 83)(51 84)(52 79)(53 80)(54 81)(85 118)(86 119)(87 120)(88 115)(89 116)(90 117)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 115 4 118)(2 120 5 117)(3 119 6 116)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 48 16 45)(14 47 17 44)(15 46 18 43)(19 31 22 34)(20 36 23 33)(21 35 24 32)(25 41 28 38)(26 40 29 37)(27 39 30 42)(55 86 58 89)(56 85 59 88)(57 90 60 87)(61 96 64 93)(62 95 65 92)(63 94 66 91)(67 100 70 97)(68 99 71 102)(69 98 72 101)(73 104 76 107)(74 103 77 106)(75 108 78 105)(79 114 82 111)(80 113 83 110)(81 112 84 109)
(1 36 39 53 43)(2 31 40 54 44)(3 32 41 49 45)(4 33 42 50 46)(5 34 37 51 47)(6 35 38 52 48)(7 17 117 19 26)(8 18 118 20 27)(9 13 119 21 28)(10 14 120 22 29)(11 15 115 23 30)(12 16 116 24 25)(55 70 63 82 78)(56 71 64 83 73)(57 72 65 84 74)(58 67 66 79 75)(59 68 61 80 76)(60 69 62 81 77)(85 102 93 110 104)(86 97 94 111 105)(87 98 95 112 106)(88 99 96 113 107)(89 100 91 114 108)(90 101 92 109 103)
(1 56)(2 57)(3 58)(4 59)(5 60)(6 55)(7 101 26 103)(8 102 27 104)(9 97 28 105)(10 98 29 106)(11 99 30 107)(12 100 25 108)(13 111 21 94)(14 112 22 95)(15 113 23 96)(16 114 24 91)(17 109 19 92)(18 110 20 93)(31 65 44 84)(32 66 45 79)(33 61 46 80)(34 62 47 81)(35 63 48 82)(36 64 43 83)(37 77 51 69)(38 78 52 70)(39 73 53 71)(40 74 54 72)(41 75 49 67)(42 76 50 68)(85 118)(86 119)(87 120)(88 115)(89 116)(90 117)

G:=sub<Sym(120)| (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,101)(20,102)(21,97)(22,98)(23,99)(24,100)(25,91)(26,92)(27,93)(28,94)(29,95)(30,96)(31,69)(32,70)(33,71)(34,72)(35,67)(36,68)(37,65)(38,66)(39,61)(40,62)(41,63)(42,64)(43,76)(44,77)(45,78)(46,73)(47,74)(48,75)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,115,4,118)(2,120,5,117)(3,119,6,116)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109), (1,36,39,53,43)(2,31,40,54,44)(3,32,41,49,45)(4,33,42,50,46)(5,34,37,51,47)(6,35,38,52,48)(7,17,117,19,26)(8,18,118,20,27)(9,13,119,21,28)(10,14,120,22,29)(11,15,115,23,30)(12,16,116,24,25)(55,70,63,82,78)(56,71,64,83,73)(57,72,65,84,74)(58,67,66,79,75)(59,68,61,80,76)(60,69,62,81,77)(85,102,93,110,104)(86,97,94,111,105)(87,98,95,112,106)(88,99,96,113,107)(89,100,91,114,108)(90,101,92,109,103), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,101,26,103)(8,102,27,104)(9,97,28,105)(10,98,29,106)(11,99,30,107)(12,100,25,108)(13,111,21,94)(14,112,22,95)(15,113,23,96)(16,114,24,91)(17,109,19,92)(18,110,20,93)(31,65,44,84)(32,66,45,79)(33,61,46,80)(34,62,47,81)(35,63,48,82)(36,64,43,83)(37,77,51,69)(38,78,52,70)(39,73,53,71)(40,74,54,72)(41,75,49,67)(42,76,50,68)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117)>;

G:=Group( (1,59)(2,60)(3,55)(4,56)(5,57)(6,58)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,101)(20,102)(21,97)(22,98)(23,99)(24,100)(25,91)(26,92)(27,93)(28,94)(29,95)(30,96)(31,69)(32,70)(33,71)(34,72)(35,67)(36,68)(37,65)(38,66)(39,61)(40,62)(41,63)(42,64)(43,76)(44,77)(45,78)(46,73)(47,74)(48,75)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,115,4,118)(2,120,5,117)(3,119,6,116)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,48,16,45)(14,47,17,44)(15,46,18,43)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109), (1,36,39,53,43)(2,31,40,54,44)(3,32,41,49,45)(4,33,42,50,46)(5,34,37,51,47)(6,35,38,52,48)(7,17,117,19,26)(8,18,118,20,27)(9,13,119,21,28)(10,14,120,22,29)(11,15,115,23,30)(12,16,116,24,25)(55,70,63,82,78)(56,71,64,83,73)(57,72,65,84,74)(58,67,66,79,75)(59,68,61,80,76)(60,69,62,81,77)(85,102,93,110,104)(86,97,94,111,105)(87,98,95,112,106)(88,99,96,113,107)(89,100,91,114,108)(90,101,92,109,103), (1,56)(2,57)(3,58)(4,59)(5,60)(6,55)(7,101,26,103)(8,102,27,104)(9,97,28,105)(10,98,29,106)(11,99,30,107)(12,100,25,108)(13,111,21,94)(14,112,22,95)(15,113,23,96)(16,114,24,91)(17,109,19,92)(18,110,20,93)(31,65,44,84)(32,66,45,79)(33,61,46,80)(34,62,47,81)(35,63,48,82)(36,64,43,83)(37,77,51,69)(38,78,52,70)(39,73,53,71)(40,74,54,72)(41,75,49,67)(42,76,50,68)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117) );

G=PermutationGroup([[(1,59),(2,60),(3,55),(4,56),(5,57),(6,58),(7,109),(8,110),(9,111),(10,112),(11,113),(12,114),(13,105),(14,106),(15,107),(16,108),(17,103),(18,104),(19,101),(20,102),(21,97),(22,98),(23,99),(24,100),(25,91),(26,92),(27,93),(28,94),(29,95),(30,96),(31,69),(32,70),(33,71),(34,72),(35,67),(36,68),(37,65),(38,66),(39,61),(40,62),(41,63),(42,64),(43,76),(44,77),(45,78),(46,73),(47,74),(48,75),(49,82),(50,83),(51,84),(52,79),(53,80),(54,81),(85,118),(86,119),(87,120),(88,115),(89,116),(90,117)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,115,4,118),(2,120,5,117),(3,119,6,116),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,48,16,45),(14,47,17,44),(15,46,18,43),(19,31,22,34),(20,36,23,33),(21,35,24,32),(25,41,28,38),(26,40,29,37),(27,39,30,42),(55,86,58,89),(56,85,59,88),(57,90,60,87),(61,96,64,93),(62,95,65,92),(63,94,66,91),(67,100,70,97),(68,99,71,102),(69,98,72,101),(73,104,76,107),(74,103,77,106),(75,108,78,105),(79,114,82,111),(80,113,83,110),(81,112,84,109)], [(1,36,39,53,43),(2,31,40,54,44),(3,32,41,49,45),(4,33,42,50,46),(5,34,37,51,47),(6,35,38,52,48),(7,17,117,19,26),(8,18,118,20,27),(9,13,119,21,28),(10,14,120,22,29),(11,15,115,23,30),(12,16,116,24,25),(55,70,63,82,78),(56,71,64,83,73),(57,72,65,84,74),(58,67,66,79,75),(59,68,61,80,76),(60,69,62,81,77),(85,102,93,110,104),(86,97,94,111,105),(87,98,95,112,106),(88,99,96,113,107),(89,100,91,114,108),(90,101,92,109,103)], [(1,56),(2,57),(3,58),(4,59),(5,60),(6,55),(7,101,26,103),(8,102,27,104),(9,97,28,105),(10,98,29,106),(11,99,30,107),(12,100,25,108),(13,111,21,94),(14,112,22,95),(15,113,23,96),(16,114,24,91),(17,109,19,92),(18,110,20,93),(31,65,44,84),(32,66,45,79),(33,61,46,80),(34,62,47,81),(35,63,48,82),(36,64,43,83),(37,77,51,69),(38,78,52,70),(39,73,53,71),(40,74,54,72),(41,75,49,67),(42,76,50,68),(85,118),(86,119),(87,120),(88,115),(89,116),(90,117)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G···4L 5 6A6B6C6D6E6F6G10A10B10C12A···12H 15 20A20B20C20D30A30B30C
order1222222234444444···45666666610101012···121520202020303030
size111155552661010101030···3042221010101044410···10812121212888

48 irreducible representations

dim111111112222222224444888
type+++++++-++-++++-+
imageC1C2C2C2C2C4C4C4S3D4Q8D6D6Dic6C4xS3C3:D4C4xS3F5C2xF5C2xF5C4:F5S3xF5Dic3:F5C2xS3xF5
kernelC2xDic3:F5Dic3:F5C2xD5xDic3C2xC6xF5C22xC3:F5D5xDic3C10xDic3C2xDic15C22xF5C6xD5C6xD5C2xF5C22xD5D10D10D10C2xC10C2xDic3Dic3C2xC6C6C22C2C2
# reps141114221222142421214121

Matrix representation of C2xDic3:F5 in GL6(F61)

6000000
0600000
0060000
0006000
0000600
0000060
,
4800000
44140000
001000
000100
000010
000001
,
57530000
2540000
001000
000100
000010
000001
,
100000
010000
000100
000010
000001
0060606060
,
1100000
50500000
0060000
0000060
0006000
001111

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[48,44,0,0,0,0,0,14,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[57,25,0,0,0,0,53,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,0,0,1,0,0,60,0,0,0,1,0,60,0,0,0,0,1,60],[11,50,0,0,0,0,0,50,0,0,0,0,0,0,60,0,0,1,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,60,0,1] >;

C2xDic3:F5 in GAP, Magma, Sage, TeX

C_2\times {\rm Dic}_3\rtimes F_5
% in TeX

G:=Group("C2xDic3:F5");
// GroupNames label

G:=SmallGroup(480,1001);
// by ID

G=gap.SmallGroup(480,1001);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,253,120,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=d^5=e^4=1,c^2=b^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<