Copied to
clipboard

G = D10.20D12order 480 = 25·3·5

9th non-split extension by D10 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C30.5C42, D10.20D12, D10.3Dic6, (C2×F5)⋊Dic3, (C6×F5)⋊1C4, C30.5(C4⋊C4), C6.10(C4×F5), (C6×D5).3Q8, (C2×Dic3)⋊2F5, (C6×D5).27D4, D10.9(C4×S3), D5.(C4⋊Dic3), C2.1(D6⋊F5), C6.12(C4⋊F5), C2.6(Dic3×F5), D5.1(D6⋊C4), C10.9(D6⋊C4), (C10×Dic3)⋊2C4, (C2×Dic15)⋊3C4, C15⋊(C2.C42), C10.5(C4×Dic3), C6.9(C22⋊F5), (C22×F5).1S3, C22.10(S3×F5), C30.9(C22⋊C4), C2.1(Dic3⋊F5), D5.(C6.D4), C51(C6.C42), D10.7(C2×Dic3), C32(D10.3Q8), (C22×D5).72D6, D10.24(C3⋊D4), D5.1(Dic3⋊C4), C10.5(Dic3⋊C4), (C2×C3⋊F5)⋊1C4, (C2×C6×F5).1C2, (C3×D5).(C4⋊C4), (C2×C30).1(C2×C4), (C2×C10).3(C4×S3), (C2×C6).11(C2×F5), (C22×C3⋊F5).1C2, (C6×D5).13(C2×C4), (C3×D5).(C22⋊C4), (C2×D5×Dic3).10C2, (D5×C2×C6).63C22, SmallGroup(480,243)

Series: Derived Chief Lower central Upper central

C1C30 — D10.20D12
C1C5C15C3×D5C6×D5D5×C2×C6C2×C6×F5 — D10.20D12
C15C30 — D10.20D12
C1C22

Generators and relations for D10.20D12
 G = < a,b,c,d | a10=b2=c12=1, d2=a4b, bab=a-1, cac-1=dad-1=a3, cbc-1=dbd-1=a2b, dcd-1=a-1bc-1 >

Subgroups: 788 in 152 conjugacy classes, 56 normal (50 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C23, D5, C10, Dic3, C12, C2×C6, C2×C6, C15, C22×C4, Dic5, C20, F5, D10, C2×C10, C2×Dic3, C2×Dic3, C2×C12, C22×C6, C3×D5, C30, C2.C42, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C22×Dic3, C22×C12, C5×Dic3, Dic15, C3×F5, C3⋊F5, C6×D5, C2×C30, C2×C4×D5, C22×F5, C22×F5, C6.C42, D5×Dic3, C10×Dic3, C2×Dic15, C6×F5, C6×F5, C2×C3⋊F5, C2×C3⋊F5, D5×C2×C6, D10.3Q8, C2×D5×Dic3, C2×C6×F5, C22×C3⋊F5, D10.20D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, F5, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C2×F5, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×F5, C4⋊F5, C22⋊F5, C6.C42, S3×F5, D10.3Q8, Dic3×F5, D6⋊F5, Dic3⋊F5, D10.20D12

Smallest permutation representation of D10.20D12
On 120 points
Generators in S120
(1 68 50 71 59 11 53 65 56 62)(2 72 54 63 51 12 57 69 60 66)(3 64 58 67 55 10 49 61 52 70)(4 119 26 110 35 9 29 116 32 113)(5 111 30 114 27 7 33 120 36 117)(6 115 34 118 31 8 25 112 28 109)(13 103 90 73 40 24 46 79 96 97)(14 74 47 98 91 19 85 104 41 80)(15 99 86 81 48 20 42 75 92 105)(16 82 43 106 87 21 93 100 37 76)(17 107 94 77 44 22 38 83 88 101)(18 78 39 102 95 23 89 108 45 84)
(1 35)(2 27)(3 31)(4 59)(5 51)(6 55)(7 66)(8 70)(9 62)(10 109)(11 113)(12 117)(13 76)(14 101)(15 84)(16 97)(17 80)(18 105)(19 44)(20 95)(21 40)(22 91)(23 48)(24 87)(25 52)(26 50)(28 49)(29 56)(30 54)(32 53)(33 60)(34 58)(36 57)(37 103)(38 98)(39 75)(41 107)(42 102)(43 79)(45 99)(46 106)(47 83)(61 112)(63 111)(64 118)(65 116)(67 115)(68 110)(69 120)(71 119)(72 114)(73 93)(74 88)(77 85)(78 92)(81 89)(82 96)(86 108)(90 100)(94 104)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 16 4 24)(2 18 5 20)(3 14 6 22)(7 15 12 23)(8 17 10 19)(9 13 11 21)(25 83 55 41)(26 97 56 93)(27 81 57 39)(28 107 58 91)(29 79 59 37)(30 105 60 89)(31 77 49 47)(32 103 50 87)(33 75 51 45)(34 101 52 85)(35 73 53 43)(36 99 54 95)(38 61 80 118)(40 71 82 116)(42 69 84 114)(44 67 74 112)(46 65 76 110)(48 63 78 120)(62 106 119 90)(64 104 109 88)(66 102 111 86)(68 100 113 96)(70 98 115 94)(72 108 117 92)

G:=sub<Sym(120)| (1,68,50,71,59,11,53,65,56,62)(2,72,54,63,51,12,57,69,60,66)(3,64,58,67,55,10,49,61,52,70)(4,119,26,110,35,9,29,116,32,113)(5,111,30,114,27,7,33,120,36,117)(6,115,34,118,31,8,25,112,28,109)(13,103,90,73,40,24,46,79,96,97)(14,74,47,98,91,19,85,104,41,80)(15,99,86,81,48,20,42,75,92,105)(16,82,43,106,87,21,93,100,37,76)(17,107,94,77,44,22,38,83,88,101)(18,78,39,102,95,23,89,108,45,84), (1,35)(2,27)(3,31)(4,59)(5,51)(6,55)(7,66)(8,70)(9,62)(10,109)(11,113)(12,117)(13,76)(14,101)(15,84)(16,97)(17,80)(18,105)(19,44)(20,95)(21,40)(22,91)(23,48)(24,87)(25,52)(26,50)(28,49)(29,56)(30,54)(32,53)(33,60)(34,58)(36,57)(37,103)(38,98)(39,75)(41,107)(42,102)(43,79)(45,99)(46,106)(47,83)(61,112)(63,111)(64,118)(65,116)(67,115)(68,110)(69,120)(71,119)(72,114)(73,93)(74,88)(77,85)(78,92)(81,89)(82,96)(86,108)(90,100)(94,104), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,16,4,24)(2,18,5,20)(3,14,6,22)(7,15,12,23)(8,17,10,19)(9,13,11,21)(25,83,55,41)(26,97,56,93)(27,81,57,39)(28,107,58,91)(29,79,59,37)(30,105,60,89)(31,77,49,47)(32,103,50,87)(33,75,51,45)(34,101,52,85)(35,73,53,43)(36,99,54,95)(38,61,80,118)(40,71,82,116)(42,69,84,114)(44,67,74,112)(46,65,76,110)(48,63,78,120)(62,106,119,90)(64,104,109,88)(66,102,111,86)(68,100,113,96)(70,98,115,94)(72,108,117,92)>;

G:=Group( (1,68,50,71,59,11,53,65,56,62)(2,72,54,63,51,12,57,69,60,66)(3,64,58,67,55,10,49,61,52,70)(4,119,26,110,35,9,29,116,32,113)(5,111,30,114,27,7,33,120,36,117)(6,115,34,118,31,8,25,112,28,109)(13,103,90,73,40,24,46,79,96,97)(14,74,47,98,91,19,85,104,41,80)(15,99,86,81,48,20,42,75,92,105)(16,82,43,106,87,21,93,100,37,76)(17,107,94,77,44,22,38,83,88,101)(18,78,39,102,95,23,89,108,45,84), (1,35)(2,27)(3,31)(4,59)(5,51)(6,55)(7,66)(8,70)(9,62)(10,109)(11,113)(12,117)(13,76)(14,101)(15,84)(16,97)(17,80)(18,105)(19,44)(20,95)(21,40)(22,91)(23,48)(24,87)(25,52)(26,50)(28,49)(29,56)(30,54)(32,53)(33,60)(34,58)(36,57)(37,103)(38,98)(39,75)(41,107)(42,102)(43,79)(45,99)(46,106)(47,83)(61,112)(63,111)(64,118)(65,116)(67,115)(68,110)(69,120)(71,119)(72,114)(73,93)(74,88)(77,85)(78,92)(81,89)(82,96)(86,108)(90,100)(94,104), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,16,4,24)(2,18,5,20)(3,14,6,22)(7,15,12,23)(8,17,10,19)(9,13,11,21)(25,83,55,41)(26,97,56,93)(27,81,57,39)(28,107,58,91)(29,79,59,37)(30,105,60,89)(31,77,49,47)(32,103,50,87)(33,75,51,45)(34,101,52,85)(35,73,53,43)(36,99,54,95)(38,61,80,118)(40,71,82,116)(42,69,84,114)(44,67,74,112)(46,65,76,110)(48,63,78,120)(62,106,119,90)(64,104,109,88)(66,102,111,86)(68,100,113,96)(70,98,115,94)(72,108,117,92) );

G=PermutationGroup([[(1,68,50,71,59,11,53,65,56,62),(2,72,54,63,51,12,57,69,60,66),(3,64,58,67,55,10,49,61,52,70),(4,119,26,110,35,9,29,116,32,113),(5,111,30,114,27,7,33,120,36,117),(6,115,34,118,31,8,25,112,28,109),(13,103,90,73,40,24,46,79,96,97),(14,74,47,98,91,19,85,104,41,80),(15,99,86,81,48,20,42,75,92,105),(16,82,43,106,87,21,93,100,37,76),(17,107,94,77,44,22,38,83,88,101),(18,78,39,102,95,23,89,108,45,84)], [(1,35),(2,27),(3,31),(4,59),(5,51),(6,55),(7,66),(8,70),(9,62),(10,109),(11,113),(12,117),(13,76),(14,101),(15,84),(16,97),(17,80),(18,105),(19,44),(20,95),(21,40),(22,91),(23,48),(24,87),(25,52),(26,50),(28,49),(29,56),(30,54),(32,53),(33,60),(34,58),(36,57),(37,103),(38,98),(39,75),(41,107),(42,102),(43,79),(45,99),(46,106),(47,83),(61,112),(63,111),(64,118),(65,116),(67,115),(68,110),(69,120),(71,119),(72,114),(73,93),(74,88),(77,85),(78,92),(81,89),(82,96),(86,108),(90,100),(94,104)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,16,4,24),(2,18,5,20),(3,14,6,22),(7,15,12,23),(8,17,10,19),(9,13,11,21),(25,83,55,41),(26,97,56,93),(27,81,57,39),(28,107,58,91),(29,79,59,37),(30,105,60,89),(31,77,49,47),(32,103,50,87),(33,75,51,45),(34,101,52,85),(35,73,53,43),(36,99,54,95),(38,61,80,118),(40,71,82,116),(42,69,84,114),(44,67,74,112),(46,65,76,110),(48,63,78,120),(62,106,119,90),(64,104,109,88),(66,102,111,86),(68,100,113,96),(70,98,115,94),(72,108,117,92)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G···4L 5 6A6B6C6D6E6F6G10A10B10C12A···12H 15 20A20B20C20D30A30B30C
order1222222234444444···45666666610101012···121520202020303030
size111155552661010101030···3042221010101044410···10812121212888

48 irreducible representations

dim111111112222222222444448888
type++++++--+-+++++-+-
imageC1C2C2C2C4C4C4C4S3D4Q8Dic3D6Dic6C4×S3D12C3⋊D4C4×S3F5C2×F5C4×F5C4⋊F5C22⋊F5S3×F5Dic3×F5D6⋊F5Dic3⋊F5
kernelD10.20D12C2×D5×Dic3C2×C6×F5C22×C3⋊F5C10×Dic3C2×Dic15C6×F5C2×C3⋊F5C22×F5C6×D5C6×D5C2×F5C22×D5D10D10D10D10C2×C10C2×Dic3C2×C6C6C6C6C22C2C2C2
# reps111122441312122242112221111

Matrix representation of D10.20D12 in GL8(𝔽61)

10000000
01000000
00100000
00010000
000000060
00001111
000060000
000006000
,
600000000
060000000
006000000
000600000
000006000
000060000
00001111
000000060
,
290000000
021000000
00100000
000600000
00000010
00001000
00000001
00000100
,
040000000
320000000
000600000
00100000
000000110
000011000
000000011
000001100

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,60,0,0,0,0,0,0,1,0,60,0,0,0,0,0,1,0,0,0,0,0,0,60,1,0,0],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,1,0,0,0,0,0,60,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,60],[29,0,0,0,0,0,0,0,0,21,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0],[0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0,0,0,0,11,0,0,0,0,0,0,0,0,0,11,0] >;

D10.20D12 in GAP, Magma, Sage, TeX

D_{10}._{20}D_{12}
% in TeX

G:=Group("D10.20D12");
// GroupNames label

G:=SmallGroup(480,243);
// by ID

G=gap.SmallGroup(480,243);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,253,64,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^12=1,d^2=a^4*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations

׿
×
𝔽