Copied to
clipboard

G = C2×D5×Dic3order 240 = 24·3·5

Direct product of C2, D5 and Dic3

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C2×D5×Dic3, D10.19D6, C30.15C23, Dic157C22, C63(C4×D5), C304(C2×C4), (C6×D5)⋊2C4, C155(C22×C4), C102(C2×Dic3), (C2×C6).12D10, (C2×C10).12D6, C52(C22×Dic3), (C10×Dic3)⋊3C2, (C2×Dic15)⋊7C2, (C2×C30).9C22, (C22×D5).5S3, C22.11(S3×D5), C6.15(C22×D5), C10.15(C22×S3), (C5×Dic3)⋊5C22, (C6×D5).15C22, C34(C2×C4×D5), C2.2(C2×S3×D5), (D5×C2×C6).2C2, (C3×D5)⋊3(C2×C4), SmallGroup(240,139)

Series: Derived Chief Lower central Upper central

C1C15 — C2×D5×Dic3
C1C5C15C30C6×D5D5×Dic3 — C2×D5×Dic3
C15 — C2×D5×Dic3
C1C22

Generators and relations for C2×D5×Dic3
 G = < a,b,c,d,e | a2=b5=c2=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 368 in 108 conjugacy classes, 56 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, C6, C6, C6, C2×C4, C23, D5, C10, C10, Dic3, Dic3, C2×C6, C2×C6, C15, C22×C4, Dic5, C20, D10, C2×C10, C2×Dic3, C2×Dic3, C22×C6, C3×D5, C30, C30, C4×D5, C2×Dic5, C2×C20, C22×D5, C22×Dic3, C5×Dic3, Dic15, C6×D5, C2×C30, C2×C4×D5, D5×Dic3, C10×Dic3, C2×Dic15, D5×C2×C6, C2×D5×Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D5, Dic3, D6, C22×C4, D10, C2×Dic3, C22×S3, C4×D5, C22×D5, C22×Dic3, S3×D5, C2×C4×D5, D5×Dic3, C2×S3×D5, C2×D5×Dic3

Smallest permutation representation of C2×D5×Dic3
On 120 points
Generators in S120
(1 58)(2 59)(3 60)(4 55)(5 56)(6 57)(7 112)(8 113)(9 114)(10 109)(11 110)(12 111)(13 108)(14 103)(15 104)(16 105)(17 106)(18 107)(19 98)(20 99)(21 100)(22 101)(23 102)(24 97)(25 94)(26 95)(27 96)(28 91)(29 92)(30 93)(31 72)(32 67)(33 68)(34 69)(35 70)(36 71)(37 62)(38 63)(39 64)(40 65)(41 66)(42 61)(43 84)(44 79)(45 80)(46 81)(47 82)(48 83)(49 74)(50 75)(51 76)(52 77)(53 78)(54 73)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 39 51 48 31)(2 40 52 43 32)(3 41 53 44 33)(4 42 54 45 34)(5 37 49 46 35)(6 38 50 47 36)(7 24 115 26 14)(8 19 116 27 15)(9 20 117 28 16)(10 21 118 29 17)(11 22 119 30 18)(12 23 120 25 13)(55 61 73 80 69)(56 62 74 81 70)(57 63 75 82 71)(58 64 76 83 72)(59 65 77 84 67)(60 66 78 79 68)(85 95 103 112 97)(86 96 104 113 98)(87 91 105 114 99)(88 92 106 109 100)(89 93 107 110 101)(90 94 108 111 102)
(1 69)(2 70)(3 71)(4 72)(5 67)(6 68)(7 92)(8 93)(9 94)(10 95)(11 96)(12 91)(13 105)(14 106)(15 107)(16 108)(17 103)(18 104)(19 89)(20 90)(21 85)(22 86)(23 87)(24 88)(25 114)(26 109)(27 110)(28 111)(29 112)(30 113)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 84)(38 79)(39 80)(40 81)(41 82)(42 83)(43 62)(44 63)(45 64)(46 65)(47 66)(48 61)(49 77)(50 78)(51 73)(52 74)(53 75)(54 76)(97 118)(98 119)(99 120)(100 115)(101 116)(102 117)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 119 4 116)(2 118 5 115)(3 117 6 120)(7 43 10 46)(8 48 11 45)(9 47 12 44)(13 53 16 50)(14 52 17 49)(15 51 18 54)(19 31 22 34)(20 36 23 33)(21 35 24 32)(25 41 28 38)(26 40 29 37)(27 39 30 42)(55 86 58 89)(56 85 59 88)(57 90 60 87)(61 96 64 93)(62 95 65 92)(63 94 66 91)(67 100 70 97)(68 99 71 102)(69 98 72 101)(73 104 76 107)(74 103 77 106)(75 108 78 105)(79 114 82 111)(80 113 83 110)(81 112 84 109)

G:=sub<Sym(120)| (1,58)(2,59)(3,60)(4,55)(5,56)(6,57)(7,112)(8,113)(9,114)(10,109)(11,110)(12,111)(13,108)(14,103)(15,104)(16,105)(17,106)(18,107)(19,98)(20,99)(21,100)(22,101)(23,102)(24,97)(25,94)(26,95)(27,96)(28,91)(29,92)(30,93)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,62)(38,63)(39,64)(40,65)(41,66)(42,61)(43,84)(44,79)(45,80)(46,81)(47,82)(48,83)(49,74)(50,75)(51,76)(52,77)(53,78)(54,73)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,39,51,48,31)(2,40,52,43,32)(3,41,53,44,33)(4,42,54,45,34)(5,37,49,46,35)(6,38,50,47,36)(7,24,115,26,14)(8,19,116,27,15)(9,20,117,28,16)(10,21,118,29,17)(11,22,119,30,18)(12,23,120,25,13)(55,61,73,80,69)(56,62,74,81,70)(57,63,75,82,71)(58,64,76,83,72)(59,65,77,84,67)(60,66,78,79,68)(85,95,103,112,97)(86,96,104,113,98)(87,91,105,114,99)(88,92,106,109,100)(89,93,107,110,101)(90,94,108,111,102), (1,69)(2,70)(3,71)(4,72)(5,67)(6,68)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,89)(20,90)(21,85)(22,86)(23,87)(24,88)(25,114)(26,109)(27,110)(28,111)(29,112)(30,113)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,84)(38,79)(39,80)(40,81)(41,82)(42,83)(43,62)(44,63)(45,64)(46,65)(47,66)(48,61)(49,77)(50,78)(51,73)(52,74)(53,75)(54,76)(97,118)(98,119)(99,120)(100,115)(101,116)(102,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,119,4,116)(2,118,5,115)(3,117,6,120)(7,43,10,46)(8,48,11,45)(9,47,12,44)(13,53,16,50)(14,52,17,49)(15,51,18,54)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109)>;

G:=Group( (1,58)(2,59)(3,60)(4,55)(5,56)(6,57)(7,112)(8,113)(9,114)(10,109)(11,110)(12,111)(13,108)(14,103)(15,104)(16,105)(17,106)(18,107)(19,98)(20,99)(21,100)(22,101)(23,102)(24,97)(25,94)(26,95)(27,96)(28,91)(29,92)(30,93)(31,72)(32,67)(33,68)(34,69)(35,70)(36,71)(37,62)(38,63)(39,64)(40,65)(41,66)(42,61)(43,84)(44,79)(45,80)(46,81)(47,82)(48,83)(49,74)(50,75)(51,76)(52,77)(53,78)(54,73)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,39,51,48,31)(2,40,52,43,32)(3,41,53,44,33)(4,42,54,45,34)(5,37,49,46,35)(6,38,50,47,36)(7,24,115,26,14)(8,19,116,27,15)(9,20,117,28,16)(10,21,118,29,17)(11,22,119,30,18)(12,23,120,25,13)(55,61,73,80,69)(56,62,74,81,70)(57,63,75,82,71)(58,64,76,83,72)(59,65,77,84,67)(60,66,78,79,68)(85,95,103,112,97)(86,96,104,113,98)(87,91,105,114,99)(88,92,106,109,100)(89,93,107,110,101)(90,94,108,111,102), (1,69)(2,70)(3,71)(4,72)(5,67)(6,68)(7,92)(8,93)(9,94)(10,95)(11,96)(12,91)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,89)(20,90)(21,85)(22,86)(23,87)(24,88)(25,114)(26,109)(27,110)(28,111)(29,112)(30,113)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,84)(38,79)(39,80)(40,81)(41,82)(42,83)(43,62)(44,63)(45,64)(46,65)(47,66)(48,61)(49,77)(50,78)(51,73)(52,74)(53,75)(54,76)(97,118)(98,119)(99,120)(100,115)(101,116)(102,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,119,4,116)(2,118,5,115)(3,117,6,120)(7,43,10,46)(8,48,11,45)(9,47,12,44)(13,53,16,50)(14,52,17,49)(15,51,18,54)(19,31,22,34)(20,36,23,33)(21,35,24,32)(25,41,28,38)(26,40,29,37)(27,39,30,42)(55,86,58,89)(56,85,59,88)(57,90,60,87)(61,96,64,93)(62,95,65,92)(63,94,66,91)(67,100,70,97)(68,99,71,102)(69,98,72,101)(73,104,76,107)(74,103,77,106)(75,108,78,105)(79,114,82,111)(80,113,83,110)(81,112,84,109) );

G=PermutationGroup([[(1,58),(2,59),(3,60),(4,55),(5,56),(6,57),(7,112),(8,113),(9,114),(10,109),(11,110),(12,111),(13,108),(14,103),(15,104),(16,105),(17,106),(18,107),(19,98),(20,99),(21,100),(22,101),(23,102),(24,97),(25,94),(26,95),(27,96),(28,91),(29,92),(30,93),(31,72),(32,67),(33,68),(34,69),(35,70),(36,71),(37,62),(38,63),(39,64),(40,65),(41,66),(42,61),(43,84),(44,79),(45,80),(46,81),(47,82),(48,83),(49,74),(50,75),(51,76),(52,77),(53,78),(54,73),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,39,51,48,31),(2,40,52,43,32),(3,41,53,44,33),(4,42,54,45,34),(5,37,49,46,35),(6,38,50,47,36),(7,24,115,26,14),(8,19,116,27,15),(9,20,117,28,16),(10,21,118,29,17),(11,22,119,30,18),(12,23,120,25,13),(55,61,73,80,69),(56,62,74,81,70),(57,63,75,82,71),(58,64,76,83,72),(59,65,77,84,67),(60,66,78,79,68),(85,95,103,112,97),(86,96,104,113,98),(87,91,105,114,99),(88,92,106,109,100),(89,93,107,110,101),(90,94,108,111,102)], [(1,69),(2,70),(3,71),(4,72),(5,67),(6,68),(7,92),(8,93),(9,94),(10,95),(11,96),(12,91),(13,105),(14,106),(15,107),(16,108),(17,103),(18,104),(19,89),(20,90),(21,85),(22,86),(23,87),(24,88),(25,114),(26,109),(27,110),(28,111),(29,112),(30,113),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,84),(38,79),(39,80),(40,81),(41,82),(42,83),(43,62),(44,63),(45,64),(46,65),(47,66),(48,61),(49,77),(50,78),(51,73),(52,74),(53,75),(54,76),(97,118),(98,119),(99,120),(100,115),(101,116),(102,117)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,119,4,116),(2,118,5,115),(3,117,6,120),(7,43,10,46),(8,48,11,45),(9,47,12,44),(13,53,16,50),(14,52,17,49),(15,51,18,54),(19,31,22,34),(20,36,23,33),(21,35,24,32),(25,41,28,38),(26,40,29,37),(27,39,30,42),(55,86,58,89),(56,85,59,88),(57,90,60,87),(61,96,64,93),(62,95,65,92),(63,94,66,91),(67,100,70,97),(68,99,71,102),(69,98,72,101),(73,104,76,107),(74,103,77,106),(75,108,78,105),(79,114,82,111),(80,113,83,110),(81,112,84,109)]])

C2×D5×Dic3 is a maximal subgroup of
D10.20D12  (D5×Dic3)⋊C4  D10.19(C4×S3)  Dic34D20  Dic1513D4  (C6×D5).D4  Dic15⋊D4  Dic3⋊D20  D10.16D12  D10.17D12  D101Dic6  D102Dic6  Dic15.D4  D104Dic6  D208Dic3  C1517(C4×D4)  Dic159D4  C23.17(S3×D5)  (C6×D5)⋊D4  Dic153D4  Dic1516D4  C22⋊F5.S3  S3×C2×C4×D5
C2×D5×Dic3 is a maximal quotient of
D20.3Dic3  D20.2Dic3  Dic156Q8  (D5×C12)⋊C4  (C4×D5)⋊Dic3  D208Dic3  (C6×Dic5)⋊7C4  Dic1516D4

48 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D6E6F6G10A···10F15A15B20A···20H30A···30F
order1222222234444444455666666610···10151520···2030···30
size11115555233331515151522222101010102···2446···64···4

48 irreducible representations

dim11111122222222444
type+++++++-+++++-+
imageC1C2C2C2C2C4S3D5Dic3D6D6D10D10C4×D5S3×D5D5×Dic3C2×S3×D5
kernelC2×D5×Dic3D5×Dic3C10×Dic3C2×Dic15D5×C2×C6C6×D5C22×D5C2×Dic3D10D10C2×C10Dic3C2×C6C6C22C2C2
# reps14111812421428242

Matrix representation of C2×D5×Dic3 in GL5(𝔽61)

600000
01000
00100
00010
00001
,
10000
01000
00100
000601
0004218
,
600000
01000
00100
00010
0001960
,
600000
0594600
049100
000600
000060
,
110000
044800
0345700
000110
000011

G:=sub<GL(5,GF(61))| [60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,60,42,0,0,0,1,18],[60,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,19,0,0,0,0,60],[60,0,0,0,0,0,59,49,0,0,0,46,1,0,0,0,0,0,60,0,0,0,0,0,60],[11,0,0,0,0,0,4,34,0,0,0,48,57,0,0,0,0,0,11,0,0,0,0,0,11] >;

C2×D5×Dic3 in GAP, Magma, Sage, TeX

C_2\times D_5\times {\rm Dic}_3
% in TeX

G:=Group("C2xD5xDic3");
// GroupNames label

G:=SmallGroup(240,139);
// by ID

G=gap.SmallGroup(240,139);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,55,490,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^5=c^2=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽