Extensions 1→N→G→Q→1 with N=C2×C15⋊D4 and Q=C2

Direct product G=N×Q with N=C2×C15⋊D4 and Q=C2
dρLabelID
C22×C15⋊D4240C2^2xC15:D4480,1118

Semidirect products G=N:Q with N=C2×C15⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C15⋊D4)⋊1C2 = Dic15⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):1C2480,484
(C2×C15⋊D4)⋊2C2 = D10⋊D12φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):2C2480,524
(C2×C15⋊D4)⋊3C2 = C60⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):3C2480,525
(C2×C15⋊D4)⋊4C2 = Dic152D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):4C2480,529
(C2×C15⋊D4)⋊5C2 = D6⋊D20φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):5C2480,530
(C2×C15⋊D4)⋊6C2 = C604D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):6C2480,532
(C2×C15⋊D4)⋊7C2 = D3012D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):7C2480,537
(C2×C15⋊D4)⋊8C2 = C6010D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):8C2480,539
(C2×C15⋊D4)⋊9C2 = D64D20φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):9C2480,550
(C2×C15⋊D4)⋊10C2 = D304D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):10C2480,551
(C2×C15⋊D4)⋊11C2 = (C6×D5)⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):11C2480,625
(C2×C15⋊D4)⋊12C2 = (C2×C30)⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):12C2480,639
(C2×C15⋊D4)⋊13C2 = (S3×C10)⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):13C2480,641
(C2×C15⋊D4)⋊14C2 = Dic155D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):14C2480,643
(C2×C15⋊D4)⋊15C2 = C15⋊C22≀C2φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):15C2480,644
(C2×C15⋊D4)⋊16C2 = Dic1518D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):16C2480,647
(C2×C15⋊D4)⋊17C2 = C2×D205S3φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):17C2480,1074
(C2×C15⋊D4)⋊18C2 = C2×D125D5φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):18C2480,1084
(C2×C15⋊D4)⋊19C2 = C2×C20⋊D6φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):19C2480,1089
(C2×C15⋊D4)⋊20C2 = D2013D6φ: C2/C1C2 ⊆ Out C2×C15⋊D41208-(C2xC15:D4):20C2480,1101
(C2×C15⋊D4)⋊21C2 = C2×C30.C23φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4):21C2480,1114
(C2×C15⋊D4)⋊22C2 = C2×D5×C3⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):22C2480,1122
(C2×C15⋊D4)⋊23C2 = C2×S3×C5⋊D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4120(C2xC15:D4):23C2480,1123
(C2×C15⋊D4)⋊24C2 = C2×D6.D10φ: trivial image240(C2xC15:D4):24C2480,1083

Non-split extensions G=N.Q with N=C2×C15⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×C15⋊D4).1C2 = D10.17D12φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).1C2480,490
(C2×C15⋊D4).2C2 = D6⋊(C4×D5)φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).2C2480,516
(C2×C15⋊D4).3C2 = C1517(C4×D4)φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).3C2480,517
(C2×C15⋊D4).4C2 = Dic159D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).4C2480,518
(C2×C15⋊D4).5C2 = D6⋊C4⋊D5φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).5C2480,523
(C2×C15⋊D4).6C2 = D10⋊C4⋊S3φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).6C2480,528
(C2×C15⋊D4).7C2 = D6.9D20φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).7C2480,533
(C2×C15⋊D4).8C2 = Dic15.10D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).8C2480,538
(C2×C15⋊D4).9C2 = Dic15.31D4φ: C2/C1C2 ⊆ Out C2×C15⋊D4240(C2xC15:D4).9C2480,540
(C2×C15⋊D4).10C2 = D10.D12φ: C2/C1C2 ⊆ Out C2×C15⋊D41208-(C2xC15:D4).10C2480,248
(C2×C15⋊D4).11C2 = C4×C15⋊D4φ: trivial image240(C2xC15:D4).11C2480,515

׿
×
𝔽