Extensions 1→N→G→Q→1 with N=C2xC15:D4 and Q=C2

Direct product G=NxQ with N=C2xC15:D4 and Q=C2
dρLabelID
C22xC15:D4240C2^2xC15:D4480,1118

Semidirect products G=N:Q with N=C2xC15:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC15:D4):1C2 = Dic15:D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):1C2480,484
(C2xC15:D4):2C2 = D10:D12φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):2C2480,524
(C2xC15:D4):3C2 = C60:D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):3C2480,525
(C2xC15:D4):4C2 = Dic15:2D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):4C2480,529
(C2xC15:D4):5C2 = D6:D20φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):5C2480,530
(C2xC15:D4):6C2 = C60:4D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):6C2480,532
(C2xC15:D4):7C2 = D30:12D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):7C2480,537
(C2xC15:D4):8C2 = C60:10D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):8C2480,539
(C2xC15:D4):9C2 = D6:4D20φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):9C2480,550
(C2xC15:D4):10C2 = D30:4D4φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):10C2480,551
(C2xC15:D4):11C2 = (C6xD5):D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):11C2480,625
(C2xC15:D4):12C2 = (C2xC30):D4φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):12C2480,639
(C2xC15:D4):13C2 = (S3xC10):D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):13C2480,641
(C2xC15:D4):14C2 = Dic15:5D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):14C2480,643
(C2xC15:D4):15C2 = C15:C22wrC2φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):15C2480,644
(C2xC15:D4):16C2 = Dic15:18D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):16C2480,647
(C2xC15:D4):17C2 = C2xD20:5S3φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):17C2480,1074
(C2xC15:D4):18C2 = C2xD12:5D5φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):18C2480,1084
(C2xC15:D4):19C2 = C2xC20:D6φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):19C2480,1089
(C2xC15:D4):20C2 = D20:13D6φ: C2/C1C2 ⊆ Out C2xC15:D41208-(C2xC15:D4):20C2480,1101
(C2xC15:D4):21C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4):21C2480,1114
(C2xC15:D4):22C2 = C2xD5xC3:D4φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):22C2480,1122
(C2xC15:D4):23C2 = C2xS3xC5:D4φ: C2/C1C2 ⊆ Out C2xC15:D4120(C2xC15:D4):23C2480,1123
(C2xC15:D4):24C2 = C2xD6.D10φ: trivial image240(C2xC15:D4):24C2480,1083

Non-split extensions G=N.Q with N=C2xC15:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC15:D4).1C2 = D10.17D12φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).1C2480,490
(C2xC15:D4).2C2 = D6:(C4xD5)φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).2C2480,516
(C2xC15:D4).3C2 = C15:17(C4xD4)φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).3C2480,517
(C2xC15:D4).4C2 = Dic15:9D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).4C2480,518
(C2xC15:D4).5C2 = D6:C4:D5φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).5C2480,523
(C2xC15:D4).6C2 = D10:C4:S3φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).6C2480,528
(C2xC15:D4).7C2 = D6.9D20φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).7C2480,533
(C2xC15:D4).8C2 = Dic15.10D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).8C2480,538
(C2xC15:D4).9C2 = Dic15.31D4φ: C2/C1C2 ⊆ Out C2xC15:D4240(C2xC15:D4).9C2480,540
(C2xC15:D4).10C2 = D10.D12φ: C2/C1C2 ⊆ Out C2xC15:D41208-(C2xC15:D4).10C2480,248
(C2xC15:D4).11C2 = C4xC15:D4φ: trivial image240(C2xC15:D4).11C2480,515

׿
x
:
Z
F
o
wr
Q
<