Copied to
clipboard

G = D64D20order 480 = 25·3·5

1st semidirect product of D6 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D64D20, D303D4, (C6×D5)⋊3D4, (C2×C20)⋊1D6, D6⋊C419D5, C151C22≀C2, (C2×D20)⋊6S3, (S3×C10)⋊3D4, (C6×D20)⋊16C2, (C2×C12)⋊18D10, C51(C232D6), C2.28(S3×D20), C6.27(C2×D20), C6.137(D4×D5), C10.26(S3×D4), (C22×D5)⋊2D6, D105(C3⋊D4), C33(C22⋊D20), (C2×C60)⋊19C22, (C2×Dic3)⋊1D10, C30.162(C2×D4), D303C417C2, D10⋊Dic324C2, C2.28(C20⋊D6), (C2×C30).164C23, (C10×Dic3)⋊3C22, (C2×Dic15)⋊7C22, (C22×S3).50D10, (C22×D15).56C22, (C2×C4)⋊1(S3×D5), (D5×C2×C6)⋊1C22, (C22×S3×D5)⋊1C2, (C5×D6⋊C4)⋊19C2, (C2×C15⋊D4)⋊9C2, (C2×C3⋊D20)⋊9C2, C2.19(D5×C3⋊D4), C10.40(C2×C3⋊D4), C22.212(C2×S3×D5), (S3×C2×C10).42C22, (C2×C6).176(C22×D5), (C2×C10).176(C22×S3), SmallGroup(480,550)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D64D20
C1C5C15C30C2×C30D5×C2×C6C22×S3×D5 — D64D20
C15C2×C30 — D64D20
C1C22C2×C4

Generators and relations for D64D20
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=a-1, ac=ca, dad=a19, cbc-1=a15b, dbd=a3b, dcd=c-1 >

Subgroups: 1820 in 260 conjugacy classes, 54 normal (44 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C5×S3, C3×D5, D15, C30, C22≀C2, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×D5, C22×C10, D6⋊C4, D6⋊C4, C6.D4, C2×C3⋊D4, C6×D4, S3×C23, C5×Dic3, Dic15, C60, S3×D5, C6×D5, C6×D5, S3×C10, S3×C10, D30, D30, C2×C30, D10⋊C4, C5×C22⋊C4, C2×D20, C2×D20, C2×C5⋊D4, C23×D5, C232D6, C15⋊D4, C3⋊D20, C3×D20, C10×Dic3, C2×Dic15, C2×C60, C2×S3×D5, D5×C2×C6, S3×C2×C10, C22×D15, C22⋊D20, D10⋊Dic3, C5×D6⋊C4, D303C4, C2×C15⋊D4, C2×C3⋊D20, C6×D20, C22×S3×D5, D64D20
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C22≀C2, D20, C22×D5, S3×D4, C2×C3⋊D4, S3×D5, C2×D20, D4×D5, C232D6, C2×S3×D5, C22⋊D20, S3×D20, C20⋊D6, D5×C3⋊D4, D64D20

Smallest permutation representation of D64D20
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 35)(32 34)(36 60)(37 59)(38 58)(39 57)(40 56)(41 55)(42 54)(43 53)(44 52)(45 51)(46 50)(47 49)(61 90)(62 89)(63 88)(64 87)(65 86)(66 85)(67 84)(68 83)(69 82)(70 81)(71 80)(72 79)(73 78)(74 77)(75 76)(91 101)(92 100)(93 99)(94 98)(95 97)(102 120)(103 119)(104 118)(105 117)(106 116)(107 115)(108 114)(109 113)(110 112)
(1 56 76 104)(2 57 77 105)(3 58 78 106)(4 59 79 107)(5 60 80 108)(6 31 81 109)(7 32 82 110)(8 33 83 111)(9 34 84 112)(10 35 85 113)(11 36 86 114)(12 37 87 115)(13 38 88 116)(14 39 89 117)(15 40 90 118)(16 41 61 119)(17 42 62 120)(18 43 63 91)(19 44 64 92)(20 45 65 93)(21 46 66 94)(22 47 67 95)(23 48 68 96)(24 49 69 97)(25 50 70 98)(26 51 71 99)(27 52 72 100)(28 53 73 101)(29 54 74 102)(30 55 75 103)
(1 104)(2 93)(3 112)(4 101)(5 120)(6 109)(7 98)(8 117)(9 106)(10 95)(11 114)(12 103)(13 92)(14 111)(15 100)(16 119)(17 108)(18 97)(19 116)(20 105)(21 94)(22 113)(23 102)(24 91)(25 110)(26 99)(27 118)(28 107)(29 96)(30 115)(31 81)(32 70)(33 89)(34 78)(35 67)(36 86)(37 75)(38 64)(39 83)(40 72)(41 61)(42 80)(43 69)(44 88)(45 77)(46 66)(47 85)(48 74)(49 63)(50 82)(51 71)(52 90)(53 79)(54 68)(55 87)(56 76)(57 65)(58 84)(59 73)(60 62)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,35)(32,34)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,101)(92,100)(93,99)(94,98)(95,97)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112), (1,56,76,104)(2,57,77,105)(3,58,78,106)(4,59,79,107)(5,60,80,108)(6,31,81,109)(7,32,82,110)(8,33,83,111)(9,34,84,112)(10,35,85,113)(11,36,86,114)(12,37,87,115)(13,38,88,116)(14,39,89,117)(15,40,90,118)(16,41,61,119)(17,42,62,120)(18,43,63,91)(19,44,64,92)(20,45,65,93)(21,46,66,94)(22,47,67,95)(23,48,68,96)(24,49,69,97)(25,50,70,98)(26,51,71,99)(27,52,72,100)(28,53,73,101)(29,54,74,102)(30,55,75,103), (1,104)(2,93)(3,112)(4,101)(5,120)(6,109)(7,98)(8,117)(9,106)(10,95)(11,114)(12,103)(13,92)(14,111)(15,100)(16,119)(17,108)(18,97)(19,116)(20,105)(21,94)(22,113)(23,102)(24,91)(25,110)(26,99)(27,118)(28,107)(29,96)(30,115)(31,81)(32,70)(33,89)(34,78)(35,67)(36,86)(37,75)(38,64)(39,83)(40,72)(41,61)(42,80)(43,69)(44,88)(45,77)(46,66)(47,85)(48,74)(49,63)(50,82)(51,71)(52,90)(53,79)(54,68)(55,87)(56,76)(57,65)(58,84)(59,73)(60,62)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,35)(32,34)(36,60)(37,59)(38,58)(39,57)(40,56)(41,55)(42,54)(43,53)(44,52)(45,51)(46,50)(47,49)(61,90)(62,89)(63,88)(64,87)(65,86)(66,85)(67,84)(68,83)(69,82)(70,81)(71,80)(72,79)(73,78)(74,77)(75,76)(91,101)(92,100)(93,99)(94,98)(95,97)(102,120)(103,119)(104,118)(105,117)(106,116)(107,115)(108,114)(109,113)(110,112), (1,56,76,104)(2,57,77,105)(3,58,78,106)(4,59,79,107)(5,60,80,108)(6,31,81,109)(7,32,82,110)(8,33,83,111)(9,34,84,112)(10,35,85,113)(11,36,86,114)(12,37,87,115)(13,38,88,116)(14,39,89,117)(15,40,90,118)(16,41,61,119)(17,42,62,120)(18,43,63,91)(19,44,64,92)(20,45,65,93)(21,46,66,94)(22,47,67,95)(23,48,68,96)(24,49,69,97)(25,50,70,98)(26,51,71,99)(27,52,72,100)(28,53,73,101)(29,54,74,102)(30,55,75,103), (1,104)(2,93)(3,112)(4,101)(5,120)(6,109)(7,98)(8,117)(9,106)(10,95)(11,114)(12,103)(13,92)(14,111)(15,100)(16,119)(17,108)(18,97)(19,116)(20,105)(21,94)(22,113)(23,102)(24,91)(25,110)(26,99)(27,118)(28,107)(29,96)(30,115)(31,81)(32,70)(33,89)(34,78)(35,67)(36,86)(37,75)(38,64)(39,83)(40,72)(41,61)(42,80)(43,69)(44,88)(45,77)(46,66)(47,85)(48,74)(49,63)(50,82)(51,71)(52,90)(53,79)(54,68)(55,87)(56,76)(57,65)(58,84)(59,73)(60,62) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,35),(32,34),(36,60),(37,59),(38,58),(39,57),(40,56),(41,55),(42,54),(43,53),(44,52),(45,51),(46,50),(47,49),(61,90),(62,89),(63,88),(64,87),(65,86),(66,85),(67,84),(68,83),(69,82),(70,81),(71,80),(72,79),(73,78),(74,77),(75,76),(91,101),(92,100),(93,99),(94,98),(95,97),(102,120),(103,119),(104,118),(105,117),(106,116),(107,115),(108,114),(109,113),(110,112)], [(1,56,76,104),(2,57,77,105),(3,58,78,106),(4,59,79,107),(5,60,80,108),(6,31,81,109),(7,32,82,110),(8,33,83,111),(9,34,84,112),(10,35,85,113),(11,36,86,114),(12,37,87,115),(13,38,88,116),(14,39,89,117),(15,40,90,118),(16,41,61,119),(17,42,62,120),(18,43,63,91),(19,44,64,92),(20,45,65,93),(21,46,66,94),(22,47,67,95),(23,48,68,96),(24,49,69,97),(25,50,70,98),(26,51,71,99),(27,52,72,100),(28,53,73,101),(29,54,74,102),(30,55,75,103)], [(1,104),(2,93),(3,112),(4,101),(5,120),(6,109),(7,98),(8,117),(9,106),(10,95),(11,114),(12,103),(13,92),(14,111),(15,100),(16,119),(17,108),(18,97),(19,116),(20,105),(21,94),(22,113),(23,102),(24,91),(25,110),(26,99),(27,118),(28,107),(29,96),(30,115),(31,81),(32,70),(33,89),(34,78),(35,67),(36,86),(37,75),(38,64),(39,83),(40,72),(41,61),(42,80),(43,69),(44,88),(45,77),(46,66),(47,85),(48,74),(49,63),(50,82),(51,71),(52,90),(53,79),(54,68),(55,87),(56,76),(57,65),(58,84),(59,73),(60,62)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E6F6G10A···10F10G10H10I10J12A12B15A15B20A20B20C20D20E20F20G20H30A···30F60A···60H
order12222222222344455666666610···101010101012121515202020202020202030···3060···60
size111166101020303024126022222202020202···21212121244444444121212124···44···4

60 irreducible representations

dim111111112222222222224444444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D5D6D6D10D10D10C3⋊D4D20S3×D4S3×D5D4×D5C2×S3×D5S3×D20C20⋊D6D5×C3⋊D4
kernelD64D20D10⋊Dic3C5×D6⋊C4D303C4C2×C15⋊D4C2×C3⋊D20C6×D20C22×S3×D5C2×D20C6×D5S3×C10D30D6⋊C4C2×C20C22×D5C2×Dic3C2×C12C22×S3D10D6C10C2×C4C6C22C2C2C2
# reps111111111222212222482242444

Matrix representation of D64D20 in GL8(𝔽61)

01000000
6060000000
006000000
000600000
0000446000
0000456000
000000600
000000060
,
01000000
10000000
006000000
005310000
000004300
000044000
000000600
000000111
,
10000000
01000000
0060460000
005310000
00001000
00000100
0000002716
0000004634
,
10000000
01000000
0060460000
00010000
000017100
0000174400
0000002716
0000004634

G:=sub<GL(8,GF(61))| [0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,44,45,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,60,53,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,44,0,0,0,0,0,0,43,0,0,0,0,0,0,0,0,0,60,11,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,53,0,0,0,0,0,0,46,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,16,34],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,46,1,0,0,0,0,0,0,0,0,17,17,0,0,0,0,0,0,1,44,0,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,16,34] >;

D64D20 in GAP, Magma, Sage, TeX

D_6\rtimes_4D_{20}
% in TeX

G:=Group("D6:4D20");
// GroupNames label

G:=SmallGroup(480,550);
// by ID

G=gap.SmallGroup(480,550);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,219,58,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^19,c*b*c^-1=a^15*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽