Copied to
clipboard

G = D10.D12order 480 = 25·3·5

3rd non-split extension by D10 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.3D12, (C22×S3)⋊F5, C22⋊F51S3, C31(C23⋊F5), C151(C23⋊C4), (C6×D5).28D4, C22.3(S3×F5), (C2×Dic15)⋊4C4, C2.12(D6⋊F5), C10.12(D6⋊C4), D10.3(C3⋊D4), (C22×D5).34D6, C52(C23.6D6), C6.12(C22⋊F5), D10.D61C2, C30.12(C22⋊C4), (S3×C2×C10)⋊2C4, (C2×C6).1(C2×F5), (C2×C10).8(C4×S3), (C2×C30).6(C2×C4), (C3×C22⋊F5)⋊1C2, (D5×C2×C6).64C22, (C2×C15⋊D4).10C2, SmallGroup(480,248)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D10.D12
C1C5C15C30C6×D5D5×C2×C6C3×C22⋊F5 — D10.D12
C15C30C2×C30 — D10.D12
C1C2C22

Generators and relations for D10.D12
 G = < a,b,c,d | a10=b2=c12=1, d2=a-1b, bab=a-1, cac-1=dad-1=a3, cbc-1=a7b, dbd-1=a2b, dcd-1=a-1bc-1 >

Subgroups: 708 in 104 conjugacy classes, 26 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, Dic5, F5, D10, D10, C2×C10, C2×C10, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C5×S3, C3×D5, C30, C30, C23⋊C4, C2×Dic5, C5⋊D4, C2×F5, C22×D5, C22×C10, C6.D4, C3×C22⋊C4, C2×C3⋊D4, Dic15, C3×F5, C3⋊F5, C6×D5, C6×D5, S3×C10, C2×C30, C22⋊F5, C22⋊F5, C2×C5⋊D4, C23.6D6, C15⋊D4, C2×Dic15, C6×F5, C2×C3⋊F5, D5×C2×C6, S3×C2×C10, C23⋊F5, C3×C22⋊F5, D10.D6, C2×C15⋊D4, D10.D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, F5, C4×S3, D12, C3⋊D4, C23⋊C4, C2×F5, D6⋊C4, C22⋊F5, C23.6D6, S3×F5, C23⋊F5, D6⋊F5, D10.D12

Smallest permutation representation of D10.D12
On 120 points
Generators in S120
(1 58 71 93 104 21 43 32 79 116)(2 94 44 117 72 22 80 59 105 33)(3 118 81 34 45 23 106 95 61 60)(4 35 107 49 82 24 62 119 46 96)(5 50 63 85 108 13 47 36 83 120)(6 86 48 109 64 14 84 51 97 25)(7 110 73 26 37 15 98 87 65 52)(8 27 99 53 74 16 66 111 38 88)(9 54 67 89 100 17 39 28 75 112)(10 90 40 113 68 18 76 55 101 29)(11 114 77 30 41 19 102 91 69 56)(12 31 103 57 78 20 70 115 42 92)
(1 116)(2 72)(3 60)(4 82)(5 120)(6 64)(7 52)(8 74)(9 112)(10 68)(11 56)(12 78)(13 108)(14 25)(15 37)(16 88)(17 100)(18 29)(19 41)(20 92)(21 104)(22 33)(23 45)(24 96)(26 98)(27 53)(28 67)(30 102)(31 57)(32 71)(34 106)(35 49)(36 63)(38 66)(39 89)(42 70)(43 93)(46 62)(47 85)(50 83)(54 75)(58 79)(61 118)(65 110)(69 114)(73 87)(76 101)(77 91)(80 105)(81 95)(84 97)(86 109)(90 113)(94 117)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 9)(2 16 22 8)(3 15)(4 6 24 14)(7 23)(10 20 18 12)(11 19)(17 21)(25 46 84 119)(26 106 87 45)(27 59 74 105)(28 116 89 58)(29 42 76 115)(30 102 91 41)(31 55 78 101)(32 112 93 54)(33 38 80 111)(34 98 95 37)(35 51 82 97)(36 120 85 50)(39 71 100 79)(40 92 113 70)(43 67 104 75)(44 88 117 66)(47 63 108 83)(48 96 109 62)(49 86 107 64)(52 61 110 81)(53 94 99 72)(56 69 114 77)(57 90 103 68)(60 65 118 73)

G:=sub<Sym(120)| (1,58,71,93,104,21,43,32,79,116)(2,94,44,117,72,22,80,59,105,33)(3,118,81,34,45,23,106,95,61,60)(4,35,107,49,82,24,62,119,46,96)(5,50,63,85,108,13,47,36,83,120)(6,86,48,109,64,14,84,51,97,25)(7,110,73,26,37,15,98,87,65,52)(8,27,99,53,74,16,66,111,38,88)(9,54,67,89,100,17,39,28,75,112)(10,90,40,113,68,18,76,55,101,29)(11,114,77,30,41,19,102,91,69,56)(12,31,103,57,78,20,70,115,42,92), (1,116)(2,72)(3,60)(4,82)(5,120)(6,64)(7,52)(8,74)(9,112)(10,68)(11,56)(12,78)(13,108)(14,25)(15,37)(16,88)(17,100)(18,29)(19,41)(20,92)(21,104)(22,33)(23,45)(24,96)(26,98)(27,53)(28,67)(30,102)(31,57)(32,71)(34,106)(35,49)(36,63)(38,66)(39,89)(42,70)(43,93)(46,62)(47,85)(50,83)(54,75)(58,79)(61,118)(65,110)(69,114)(73,87)(76,101)(77,91)(80,105)(81,95)(84,97)(86,109)(90,113)(94,117), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,9)(2,16,22,8)(3,15)(4,6,24,14)(7,23)(10,20,18,12)(11,19)(17,21)(25,46,84,119)(26,106,87,45)(27,59,74,105)(28,116,89,58)(29,42,76,115)(30,102,91,41)(31,55,78,101)(32,112,93,54)(33,38,80,111)(34,98,95,37)(35,51,82,97)(36,120,85,50)(39,71,100,79)(40,92,113,70)(43,67,104,75)(44,88,117,66)(47,63,108,83)(48,96,109,62)(49,86,107,64)(52,61,110,81)(53,94,99,72)(56,69,114,77)(57,90,103,68)(60,65,118,73)>;

G:=Group( (1,58,71,93,104,21,43,32,79,116)(2,94,44,117,72,22,80,59,105,33)(3,118,81,34,45,23,106,95,61,60)(4,35,107,49,82,24,62,119,46,96)(5,50,63,85,108,13,47,36,83,120)(6,86,48,109,64,14,84,51,97,25)(7,110,73,26,37,15,98,87,65,52)(8,27,99,53,74,16,66,111,38,88)(9,54,67,89,100,17,39,28,75,112)(10,90,40,113,68,18,76,55,101,29)(11,114,77,30,41,19,102,91,69,56)(12,31,103,57,78,20,70,115,42,92), (1,116)(2,72)(3,60)(4,82)(5,120)(6,64)(7,52)(8,74)(9,112)(10,68)(11,56)(12,78)(13,108)(14,25)(15,37)(16,88)(17,100)(18,29)(19,41)(20,92)(21,104)(22,33)(23,45)(24,96)(26,98)(27,53)(28,67)(30,102)(31,57)(32,71)(34,106)(35,49)(36,63)(38,66)(39,89)(42,70)(43,93)(46,62)(47,85)(50,83)(54,75)(58,79)(61,118)(65,110)(69,114)(73,87)(76,101)(77,91)(80,105)(81,95)(84,97)(86,109)(90,113)(94,117), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,9)(2,16,22,8)(3,15)(4,6,24,14)(7,23)(10,20,18,12)(11,19)(17,21)(25,46,84,119)(26,106,87,45)(27,59,74,105)(28,116,89,58)(29,42,76,115)(30,102,91,41)(31,55,78,101)(32,112,93,54)(33,38,80,111)(34,98,95,37)(35,51,82,97)(36,120,85,50)(39,71,100,79)(40,92,113,70)(43,67,104,75)(44,88,117,66)(47,63,108,83)(48,96,109,62)(49,86,107,64)(52,61,110,81)(53,94,99,72)(56,69,114,77)(57,90,103,68)(60,65,118,73) );

G=PermutationGroup([[(1,58,71,93,104,21,43,32,79,116),(2,94,44,117,72,22,80,59,105,33),(3,118,81,34,45,23,106,95,61,60),(4,35,107,49,82,24,62,119,46,96),(5,50,63,85,108,13,47,36,83,120),(6,86,48,109,64,14,84,51,97,25),(7,110,73,26,37,15,98,87,65,52),(8,27,99,53,74,16,66,111,38,88),(9,54,67,89,100,17,39,28,75,112),(10,90,40,113,68,18,76,55,101,29),(11,114,77,30,41,19,102,91,69,56),(12,31,103,57,78,20,70,115,42,92)], [(1,116),(2,72),(3,60),(4,82),(5,120),(6,64),(7,52),(8,74),(9,112),(10,68),(11,56),(12,78),(13,108),(14,25),(15,37),(16,88),(17,100),(18,29),(19,41),(20,92),(21,104),(22,33),(23,45),(24,96),(26,98),(27,53),(28,67),(30,102),(31,57),(32,71),(34,106),(35,49),(36,63),(38,66),(39,89),(42,70),(43,93),(46,62),(47,85),(50,83),(54,75),(58,79),(61,118),(65,110),(69,114),(73,87),(76,101),(77,91),(80,105),(81,95),(84,97),(86,109),(90,113),(94,117)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,9),(2,16,22,8),(3,15),(4,6,24,14),(7,23),(10,20,18,12),(11,19),(17,21),(25,46,84,119),(26,106,87,45),(27,59,74,105),(28,116,89,58),(29,42,76,115),(30,102,91,41),(31,55,78,101),(32,112,93,54),(33,38,80,111),(34,98,95,37),(35,51,82,97),(36,120,85,50),(39,71,100,79),(40,92,113,70),(43,67,104,75),(44,88,117,66),(47,63,108,83),(48,96,109,62),(49,86,107,64),(52,61,110,81),(53,94,99,72),(56,69,114,77),(57,90,103,68),(60,65,118,73)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E 5 6A6B6C6D6E10A10B10C10D10E10F10G12A12B12C12D 15 30A30B30C
order122222344444566666101010101010101212121215303030
size1121010122202060606042410102044412121212202020208888

33 irreducible representations

dim111111222222444444888
type++++++++++++++-
imageC1C2C2C2C4C4S3D4D6D12C3⋊D4C4×S3F5C23⋊C4C2×F5C22⋊F5C23.6D6C23⋊F5S3×F5D6⋊F5D10.D12
kernelD10.D12C3×C22⋊F5D10.D6C2×C15⋊D4C2×Dic15S3×C2×C10C22⋊F5C6×D5C22×D5D10D10C2×C10C22×S3C15C2×C6C6C5C3C22C2C1
# reps111122121222111224112

Matrix representation of D10.D12 in GL6(𝔽61)

100000
010000
0000160
000010
0060010
0006010
,
6000000
0600000
0000060
0000600
0006000
0060000
,
0110000
50110000
003773751
0013582727
00334343
0010102454
,
5000000
50110000
0010600
0000601
0001600
0000600

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,1,1,1,1,0,0,60,0,0,0],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60,0,0,0],[0,50,0,0,0,0,11,11,0,0,0,0,0,0,37,13,3,10,0,0,7,58,34,10,0,0,37,27,34,24,0,0,51,27,3,54],[50,50,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,60,60,60,60,0,0,0,1,0,0] >;

D10.D12 in GAP, Magma, Sage, TeX

D_{10}.D_{12}
% in TeX

G:=Group("D10.D12");
// GroupNames label

G:=SmallGroup(480,248);
// by ID

G=gap.SmallGroup(480,248);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,675,1356,9414,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^12=1,d^2=a^-1*b,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^3,c*b*c^-1=a^7*b,d*b*d^-1=a^2*b,d*c*d^-1=a^-1*b*c^-1>;
// generators/relations

׿
×
𝔽