Copied to
clipboard

G = C604D4order 480 = 25·3·5

4th semidirect product of C60 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C604D4, D62D20, (C6×D20)⋊5C2, (C2×D20)⋊4S3, (S3×C10)⋊10D4, C53(D63D4), C33(C207D4), C43(C15⋊D4), C121(C5⋊D4), C605C427C2, C6.21(C2×D20), C2.22(S3×D20), C10.20(S3×D4), C1510(C4⋊D4), C2010(C3⋊D4), (C2×C20).301D6, C30.151(C2×D4), C6.58(C4○D20), C30.90(C4○D4), (C2×C12).130D10, (C22×D5).17D6, D10⋊Dic317C2, (C2×C30).146C23, (C2×C60).120C22, (C22×S3).75D10, C10.33(D42S3), C2.18(D205S3), (C2×Dic3).156D10, (C10×Dic3).190C22, (C2×Dic15).113C22, (S3×C2×C4)⋊1D5, (S3×C2×C20)⋊2C2, (C2×C15⋊D4)⋊6C2, C6.87(C2×C5⋊D4), (C2×C4).111(S3×D5), C10.88(C2×C3⋊D4), C2.20(C2×C15⋊D4), (D5×C2×C6).31C22, C22.198(C2×S3×D5), (S3×C2×C10).90C22, (C2×C6).158(C22×D5), (C2×C10).158(C22×S3), SmallGroup(480,532)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C604D4
C1C5C15C30C2×C30D5×C2×C6C2×C15⋊D4 — C604D4
C15C2×C30 — C604D4
C1C22C2×C4

Generators and relations for C604D4
 G = < a,b,c | a60=b4=c2=1, bab-1=a-1, cac=a19, cbc=b-1 >

Subgroups: 988 in 188 conjugacy classes, 56 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C2×C6, C15, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, C20, D10, C2×C10, C2×C10, C4×S3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C5×S3, C3×D5, C30, C4⋊D4, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C4⋊Dic3, C6.D4, S3×C2×C4, C2×C3⋊D4, C6×D4, C5×Dic3, Dic15, C60, C6×D5, S3×C10, S3×C10, C2×C30, C4⋊Dic5, D10⋊C4, C2×D20, C2×C5⋊D4, C22×C20, D63D4, C15⋊D4, C3×D20, S3×C20, C10×Dic3, C2×Dic15, C2×C60, D5×C2×C6, S3×C2×C10, C207D4, D10⋊Dic3, C605C4, C2×C15⋊D4, C6×D20, S3×C2×C20, C604D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C3⋊D4, C22×S3, C4⋊D4, D20, C5⋊D4, C22×D5, S3×D4, D42S3, C2×C3⋊D4, S3×D5, C2×D20, C4○D20, C2×C5⋊D4, D63D4, C15⋊D4, C2×S3×D5, C207D4, D205S3, S3×D20, C2×C15⋊D4, C604D4

Smallest permutation representation of C604D4
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 120 159 221)(2 119 160 220)(3 118 161 219)(4 117 162 218)(5 116 163 217)(6 115 164 216)(7 114 165 215)(8 113 166 214)(9 112 167 213)(10 111 168 212)(11 110 169 211)(12 109 170 210)(13 108 171 209)(14 107 172 208)(15 106 173 207)(16 105 174 206)(17 104 175 205)(18 103 176 204)(19 102 177 203)(20 101 178 202)(21 100 179 201)(22 99 180 200)(23 98 121 199)(24 97 122 198)(25 96 123 197)(26 95 124 196)(27 94 125 195)(28 93 126 194)(29 92 127 193)(30 91 128 192)(31 90 129 191)(32 89 130 190)(33 88 131 189)(34 87 132 188)(35 86 133 187)(36 85 134 186)(37 84 135 185)(38 83 136 184)(39 82 137 183)(40 81 138 182)(41 80 139 181)(42 79 140 240)(43 78 141 239)(44 77 142 238)(45 76 143 237)(46 75 144 236)(47 74 145 235)(48 73 146 234)(49 72 147 233)(50 71 148 232)(51 70 149 231)(52 69 150 230)(53 68 151 229)(54 67 152 228)(55 66 153 227)(56 65 154 226)(57 64 155 225)(58 63 156 224)(59 62 157 223)(60 61 158 222)
(1 221)(2 240)(3 199)(4 218)(5 237)(6 196)(7 215)(8 234)(9 193)(10 212)(11 231)(12 190)(13 209)(14 228)(15 187)(16 206)(17 225)(18 184)(19 203)(20 222)(21 181)(22 200)(23 219)(24 238)(25 197)(26 216)(27 235)(28 194)(29 213)(30 232)(31 191)(32 210)(33 229)(34 188)(35 207)(36 226)(37 185)(38 204)(39 223)(40 182)(41 201)(42 220)(43 239)(44 198)(45 217)(46 236)(47 195)(48 214)(49 233)(50 192)(51 211)(52 230)(53 189)(54 208)(55 227)(56 186)(57 205)(58 224)(59 183)(60 202)(61 178)(62 137)(63 156)(64 175)(65 134)(66 153)(67 172)(68 131)(69 150)(70 169)(71 128)(72 147)(73 166)(74 125)(75 144)(76 163)(77 122)(78 141)(79 160)(80 179)(81 138)(82 157)(83 176)(84 135)(85 154)(86 173)(87 132)(88 151)(89 170)(90 129)(91 148)(92 167)(93 126)(94 145)(95 164)(96 123)(97 142)(98 161)(99 180)(100 139)(101 158)(102 177)(103 136)(104 155)(105 174)(106 133)(107 152)(108 171)(109 130)(110 149)(111 168)(112 127)(113 146)(114 165)(115 124)(116 143)(117 162)(118 121)(119 140)(120 159)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,120,159,221)(2,119,160,220)(3,118,161,219)(4,117,162,218)(5,116,163,217)(6,115,164,216)(7,114,165,215)(8,113,166,214)(9,112,167,213)(10,111,168,212)(11,110,169,211)(12,109,170,210)(13,108,171,209)(14,107,172,208)(15,106,173,207)(16,105,174,206)(17,104,175,205)(18,103,176,204)(19,102,177,203)(20,101,178,202)(21,100,179,201)(22,99,180,200)(23,98,121,199)(24,97,122,198)(25,96,123,197)(26,95,124,196)(27,94,125,195)(28,93,126,194)(29,92,127,193)(30,91,128,192)(31,90,129,191)(32,89,130,190)(33,88,131,189)(34,87,132,188)(35,86,133,187)(36,85,134,186)(37,84,135,185)(38,83,136,184)(39,82,137,183)(40,81,138,182)(41,80,139,181)(42,79,140,240)(43,78,141,239)(44,77,142,238)(45,76,143,237)(46,75,144,236)(47,74,145,235)(48,73,146,234)(49,72,147,233)(50,71,148,232)(51,70,149,231)(52,69,150,230)(53,68,151,229)(54,67,152,228)(55,66,153,227)(56,65,154,226)(57,64,155,225)(58,63,156,224)(59,62,157,223)(60,61,158,222), (1,221)(2,240)(3,199)(4,218)(5,237)(6,196)(7,215)(8,234)(9,193)(10,212)(11,231)(12,190)(13,209)(14,228)(15,187)(16,206)(17,225)(18,184)(19,203)(20,222)(21,181)(22,200)(23,219)(24,238)(25,197)(26,216)(27,235)(28,194)(29,213)(30,232)(31,191)(32,210)(33,229)(34,188)(35,207)(36,226)(37,185)(38,204)(39,223)(40,182)(41,201)(42,220)(43,239)(44,198)(45,217)(46,236)(47,195)(48,214)(49,233)(50,192)(51,211)(52,230)(53,189)(54,208)(55,227)(56,186)(57,205)(58,224)(59,183)(60,202)(61,178)(62,137)(63,156)(64,175)(65,134)(66,153)(67,172)(68,131)(69,150)(70,169)(71,128)(72,147)(73,166)(74,125)(75,144)(76,163)(77,122)(78,141)(79,160)(80,179)(81,138)(82,157)(83,176)(84,135)(85,154)(86,173)(87,132)(88,151)(89,170)(90,129)(91,148)(92,167)(93,126)(94,145)(95,164)(96,123)(97,142)(98,161)(99,180)(100,139)(101,158)(102,177)(103,136)(104,155)(105,174)(106,133)(107,152)(108,171)(109,130)(110,149)(111,168)(112,127)(113,146)(114,165)(115,124)(116,143)(117,162)(118,121)(119,140)(120,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,120,159,221)(2,119,160,220)(3,118,161,219)(4,117,162,218)(5,116,163,217)(6,115,164,216)(7,114,165,215)(8,113,166,214)(9,112,167,213)(10,111,168,212)(11,110,169,211)(12,109,170,210)(13,108,171,209)(14,107,172,208)(15,106,173,207)(16,105,174,206)(17,104,175,205)(18,103,176,204)(19,102,177,203)(20,101,178,202)(21,100,179,201)(22,99,180,200)(23,98,121,199)(24,97,122,198)(25,96,123,197)(26,95,124,196)(27,94,125,195)(28,93,126,194)(29,92,127,193)(30,91,128,192)(31,90,129,191)(32,89,130,190)(33,88,131,189)(34,87,132,188)(35,86,133,187)(36,85,134,186)(37,84,135,185)(38,83,136,184)(39,82,137,183)(40,81,138,182)(41,80,139,181)(42,79,140,240)(43,78,141,239)(44,77,142,238)(45,76,143,237)(46,75,144,236)(47,74,145,235)(48,73,146,234)(49,72,147,233)(50,71,148,232)(51,70,149,231)(52,69,150,230)(53,68,151,229)(54,67,152,228)(55,66,153,227)(56,65,154,226)(57,64,155,225)(58,63,156,224)(59,62,157,223)(60,61,158,222), (1,221)(2,240)(3,199)(4,218)(5,237)(6,196)(7,215)(8,234)(9,193)(10,212)(11,231)(12,190)(13,209)(14,228)(15,187)(16,206)(17,225)(18,184)(19,203)(20,222)(21,181)(22,200)(23,219)(24,238)(25,197)(26,216)(27,235)(28,194)(29,213)(30,232)(31,191)(32,210)(33,229)(34,188)(35,207)(36,226)(37,185)(38,204)(39,223)(40,182)(41,201)(42,220)(43,239)(44,198)(45,217)(46,236)(47,195)(48,214)(49,233)(50,192)(51,211)(52,230)(53,189)(54,208)(55,227)(56,186)(57,205)(58,224)(59,183)(60,202)(61,178)(62,137)(63,156)(64,175)(65,134)(66,153)(67,172)(68,131)(69,150)(70,169)(71,128)(72,147)(73,166)(74,125)(75,144)(76,163)(77,122)(78,141)(79,160)(80,179)(81,138)(82,157)(83,176)(84,135)(85,154)(86,173)(87,132)(88,151)(89,170)(90,129)(91,148)(92,167)(93,126)(94,145)(95,164)(96,123)(97,142)(98,161)(99,180)(100,139)(101,158)(102,177)(103,136)(104,155)(105,174)(106,133)(107,152)(108,171)(109,130)(110,149)(111,168)(112,127)(113,146)(114,165)(115,124)(116,143)(117,162)(118,121)(119,140)(120,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,120,159,221),(2,119,160,220),(3,118,161,219),(4,117,162,218),(5,116,163,217),(6,115,164,216),(7,114,165,215),(8,113,166,214),(9,112,167,213),(10,111,168,212),(11,110,169,211),(12,109,170,210),(13,108,171,209),(14,107,172,208),(15,106,173,207),(16,105,174,206),(17,104,175,205),(18,103,176,204),(19,102,177,203),(20,101,178,202),(21,100,179,201),(22,99,180,200),(23,98,121,199),(24,97,122,198),(25,96,123,197),(26,95,124,196),(27,94,125,195),(28,93,126,194),(29,92,127,193),(30,91,128,192),(31,90,129,191),(32,89,130,190),(33,88,131,189),(34,87,132,188),(35,86,133,187),(36,85,134,186),(37,84,135,185),(38,83,136,184),(39,82,137,183),(40,81,138,182),(41,80,139,181),(42,79,140,240),(43,78,141,239),(44,77,142,238),(45,76,143,237),(46,75,144,236),(47,74,145,235),(48,73,146,234),(49,72,147,233),(50,71,148,232),(51,70,149,231),(52,69,150,230),(53,68,151,229),(54,67,152,228),(55,66,153,227),(56,65,154,226),(57,64,155,225),(58,63,156,224),(59,62,157,223),(60,61,158,222)], [(1,221),(2,240),(3,199),(4,218),(5,237),(6,196),(7,215),(8,234),(9,193),(10,212),(11,231),(12,190),(13,209),(14,228),(15,187),(16,206),(17,225),(18,184),(19,203),(20,222),(21,181),(22,200),(23,219),(24,238),(25,197),(26,216),(27,235),(28,194),(29,213),(30,232),(31,191),(32,210),(33,229),(34,188),(35,207),(36,226),(37,185),(38,204),(39,223),(40,182),(41,201),(42,220),(43,239),(44,198),(45,217),(46,236),(47,195),(48,214),(49,233),(50,192),(51,211),(52,230),(53,189),(54,208),(55,227),(56,186),(57,205),(58,224),(59,183),(60,202),(61,178),(62,137),(63,156),(64,175),(65,134),(66,153),(67,172),(68,131),(69,150),(70,169),(71,128),(72,147),(73,166),(74,125),(75,144),(76,163),(77,122),(78,141),(79,160),(80,179),(81,138),(82,157),(83,176),(84,135),(85,154),(86,173),(87,132),(88,151),(89,170),(90,129),(91,148),(92,167),(93,126),(94,145),(95,164),(96,123),(97,142),(98,161),(99,180),(100,139),(101,158),(102,177),(103,136),(104,155),(105,174),(106,133),(107,152),(108,171),(109,130),(110,149),(111,168),(112,127),(113,146),(114,165),(115,124),(116,143),(117,162),(118,121),(119,140),(120,159)]])

72 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G10A···10F10G···10N12A12B15A15B20A···20H20I···20P30A···30F60A···60H
order12222222344444455666666610···1010···101212151520···2020···2030···3060···60
size111166202022266606022222202020202···26···644442···26···64···44···4

72 irreducible representations

dim111111222222222222224444444
type+++++++++++++++++-+-+-+
imageC1C2C2C2C2C2S3D4D4D5D6D6C4○D4D10D10D10C3⋊D4C5⋊D4D20C4○D20S3×D4D42S3S3×D5C15⋊D4C2×S3×D5D205S3S3×D20
kernelC604D4D10⋊Dic3C605C4C2×C15⋊D4C6×D20S3×C2×C20C2×D20C60S3×C10S3×C2×C4C2×C20C22×D5C30C2×Dic3C2×C12C22×S3C20C12D6C6C10C10C2×C4C4C22C2C2
# reps121211122212222248881124244

Matrix representation of C604D4 in GL6(𝔽61)

3300000
0370000
0006000
001100
00004118
000003
,
010000
6000000
001000
00606000
00003958
00006022
,
010000
100000
001000
000100
0000225
0000139

G:=sub<GL(6,GF(61))| [33,0,0,0,0,0,0,37,0,0,0,0,0,0,0,1,0,0,0,0,60,1,0,0,0,0,0,0,41,0,0,0,0,0,18,3],[0,60,0,0,0,0,1,0,0,0,0,0,0,0,1,60,0,0,0,0,0,60,0,0,0,0,0,0,39,60,0,0,0,0,58,22],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,22,1,0,0,0,0,5,39] >;

C604D4 in GAP, Magma, Sage, TeX

C_{60}\rtimes_4D_4
% in TeX

G:=Group("C60:4D4");
// GroupNames label

G:=SmallGroup(480,532);
// by ID

G=gap.SmallGroup(480,532);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,422,100,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^60=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^19,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽