Extensions 1→N→G→Q→1 with N=C3×Q8⋊D5 and Q=C2

Direct product G=N×Q with N=C3×Q8⋊D5 and Q=C2
dρLabelID
C6×Q8⋊D5240C6xQ8:D5480,734

Semidirect products G=N:Q with N=C3×Q8⋊D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×Q8⋊D5)⋊1C2 = S3×Q8⋊D5φ: C2/C1C2 ⊆ Out C3×Q8⋊D51208+(C3xQ8:D5):1C2480,579
(C3×Q8⋊D5)⋊2C2 = D12⋊D10φ: C2/C1C2 ⊆ Out C3×Q8⋊D51208+(C3xQ8:D5):2C2480,580
(C3×Q8⋊D5)⋊3C2 = D15⋊SD16φ: C2/C1C2 ⊆ Out C3×Q8⋊D51208-(C3xQ8:D5):3C2480,581
(C3×Q8⋊D5)⋊4C2 = D60⋊C22φ: C2/C1C2 ⊆ Out C3×Q8⋊D51208+(C3xQ8:D5):4C2480,582
(C3×Q8⋊D5)⋊5C2 = D20.27D6φ: C2/C1C2 ⊆ Out C3×Q8⋊D52408-(C3xQ8:D5):5C2480,593
(C3×Q8⋊D5)⋊6C2 = D20.28D6φ: C2/C1C2 ⊆ Out C3×Q8⋊D52408-(C3xQ8:D5):6C2480,594
(C3×Q8⋊D5)⋊7C2 = D20.16D6φ: C2/C1C2 ⊆ Out C3×Q8⋊D52408+(C3xQ8:D5):7C2480,597
(C3×Q8⋊D5)⋊8C2 = D20.17D6φ: C2/C1C2 ⊆ Out C3×Q8⋊D52408-(C3xQ8:D5):8C2480,598
(C3×Q8⋊D5)⋊9C2 = C3×D5×SD16φ: C2/C1C2 ⊆ Out C3×Q8⋊D51204(C3xQ8:D5):9C2480,706
(C3×Q8⋊D5)⋊10C2 = C3×D40⋊C2φ: C2/C1C2 ⊆ Out C3×Q8⋊D51204(C3xQ8:D5):10C2480,707
(C3×Q8⋊D5)⋊11C2 = C3×Q16⋊D5φ: C2/C1C2 ⊆ Out C3×Q8⋊D52404(C3xQ8:D5):11C2480,711
(C3×Q8⋊D5)⋊12C2 = C3×Q8.D10φ: C2/C1C2 ⊆ Out C3×Q8⋊D52404(C3xQ8:D5):12C2480,712
(C3×Q8⋊D5)⋊13C2 = C3×C20.C23φ: C2/C1C2 ⊆ Out C3×Q8⋊D52404(C3xQ8:D5):13C2480,735
(C3×Q8⋊D5)⋊14C2 = C3×D4⋊D10φ: C2/C1C2 ⊆ Out C3×Q8⋊D51204(C3xQ8:D5):14C2480,742
(C3×Q8⋊D5)⋊15C2 = C3×D4.8D10φ: trivial image2404(C3xQ8:D5):15C2480,743


׿
×
𝔽