Extensions 1→N→G→Q→1 with N=C3xQ8:D5 and Q=C2

Direct product G=NxQ with N=C3xQ8:D5 and Q=C2
dρLabelID
C6xQ8:D5240C6xQ8:D5480,734

Semidirect products G=N:Q with N=C3xQ8:D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ8:D5):1C2 = S3xQ8:D5φ: C2/C1C2 ⊆ Out C3xQ8:D51208+(C3xQ8:D5):1C2480,579
(C3xQ8:D5):2C2 = D12:D10φ: C2/C1C2 ⊆ Out C3xQ8:D51208+(C3xQ8:D5):2C2480,580
(C3xQ8:D5):3C2 = D15:SD16φ: C2/C1C2 ⊆ Out C3xQ8:D51208-(C3xQ8:D5):3C2480,581
(C3xQ8:D5):4C2 = D60:C22φ: C2/C1C2 ⊆ Out C3xQ8:D51208+(C3xQ8:D5):4C2480,582
(C3xQ8:D5):5C2 = D20.27D6φ: C2/C1C2 ⊆ Out C3xQ8:D52408-(C3xQ8:D5):5C2480,593
(C3xQ8:D5):6C2 = D20.28D6φ: C2/C1C2 ⊆ Out C3xQ8:D52408-(C3xQ8:D5):6C2480,594
(C3xQ8:D5):7C2 = D20.16D6φ: C2/C1C2 ⊆ Out C3xQ8:D52408+(C3xQ8:D5):7C2480,597
(C3xQ8:D5):8C2 = D20.17D6φ: C2/C1C2 ⊆ Out C3xQ8:D52408-(C3xQ8:D5):8C2480,598
(C3xQ8:D5):9C2 = C3xD5xSD16φ: C2/C1C2 ⊆ Out C3xQ8:D51204(C3xQ8:D5):9C2480,706
(C3xQ8:D5):10C2 = C3xD40:C2φ: C2/C1C2 ⊆ Out C3xQ8:D51204(C3xQ8:D5):10C2480,707
(C3xQ8:D5):11C2 = C3xQ16:D5φ: C2/C1C2 ⊆ Out C3xQ8:D52404(C3xQ8:D5):11C2480,711
(C3xQ8:D5):12C2 = C3xQ8.D10φ: C2/C1C2 ⊆ Out C3xQ8:D52404(C3xQ8:D5):12C2480,712
(C3xQ8:D5):13C2 = C3xC20.C23φ: C2/C1C2 ⊆ Out C3xQ8:D52404(C3xQ8:D5):13C2480,735
(C3xQ8:D5):14C2 = C3xD4:D10φ: C2/C1C2 ⊆ Out C3xQ8:D51204(C3xQ8:D5):14C2480,742
(C3xQ8:D5):15C2 = C3xD4.8D10φ: trivial image2404(C3xQ8:D5):15C2480,743


׿
x
:
Z
F
o
wr
Q
<