Copied to
clipboard

G = C3×D4⋊D10order 480 = 25·3·5

Direct product of C3 and D4⋊D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D4⋊D10, C60.220D4, C60.206C23, D4⋊D56C6, D44(C6×D5), Q8⋊D56C6, Q85(C6×D5), (C2×D20)⋊10C6, (C6×D20)⋊26C2, (C3×D4)⋊26D10, (C3×Q8)⋊23D10, C10.59(C6×D4), C20.49(C3×D4), (C2×C30).85D4, C4.Dic59C6, C1538(C8⋊C22), D20.11(C2×C6), C30.416(C2×D4), (C2×C12).246D10, (D4×C15)⋊28C22, C20.17(C22×C6), (Q8×C15)⋊25C22, C12.117(C5⋊D4), (C2×C60).302C22, (C3×D20).50C22, C12.206(C22×D5), C55(C3×C8⋊C22), C4.17(D5×C2×C6), C52C84(C2×C6), (C3×C4○D4)⋊6D5, C4○D43(C3×D5), (C5×C4○D4)⋊5C6, (C5×D4)⋊4(C2×C6), (C5×Q8)⋊6(C2×C6), (C3×D4⋊D5)⋊14C2, (C15×C4○D4)⋊6C2, (C3×Q8⋊D5)⋊14C2, (C2×C10).8(C3×D4), (C2×C4).17(C6×D5), C2.23(C6×C5⋊D4), C4.24(C3×C5⋊D4), (C2×C20).39(C2×C6), C6.144(C2×C5⋊D4), C22.5(C3×C5⋊D4), (C3×C52C8)⋊26C22, (C2×C6).41(C5⋊D4), (C3×C4.Dic5)⋊21C2, SmallGroup(480,742)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D4⋊D10
C1C5C10C20C60C3×D20C6×D20 — C3×D4⋊D10
C5C10C20 — C3×D4⋊D10
C1C6C2×C12C3×C4○D4

Generators and relations for C3×D4⋊D10
 G = < a,b,c,d,e | a3=b4=c2=d10=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=b2c, ece=b-1c, ede=d-1 >

Subgroups: 512 in 136 conjugacy classes, 58 normal (42 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, C20, C20, D10, C2×C10, C2×C10, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C3×D5, C30, C30, C8⋊C22, C52C8, D20, D20, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C22×D5, C3×M4(2), C3×D8, C3×SD16, C6×D4, C3×C4○D4, C60, C60, C6×D5, C2×C30, C2×C30, C4.Dic5, D4⋊D5, Q8⋊D5, C2×D20, C5×C4○D4, C3×C8⋊C22, C3×C52C8, C3×D20, C3×D20, C2×C60, C2×C60, D4×C15, D4×C15, Q8×C15, D5×C2×C6, D4⋊D10, C3×C4.Dic5, C3×D4⋊D5, C3×Q8⋊D5, C6×D20, C15×C4○D4, C3×D4⋊D10
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, C2×D4, D10, C3×D4, C22×C6, C3×D5, C8⋊C22, C5⋊D4, C22×D5, C6×D4, C6×D5, C2×C5⋊D4, C3×C8⋊C22, C3×C5⋊D4, D5×C2×C6, D4⋊D10, C6×C5⋊D4, C3×D4⋊D10

Smallest permutation representation of C3×D4⋊D10
On 120 points
Generators in S120
(1 45 25)(2 41 21)(3 42 22)(4 43 23)(5 44 24)(6 49 27)(7 50 28)(8 46 29)(9 47 30)(10 48 26)(11 54 34)(12 55 35)(13 51 31)(14 52 32)(15 53 33)(16 57 37)(17 58 38)(18 59 39)(19 60 40)(20 56 36)(61 107 87)(62 108 88)(63 109 89)(64 110 90)(65 101 81)(66 102 82)(67 103 83)(68 104 84)(69 105 85)(70 106 86)(71 111 95)(72 112 96)(73 113 97)(74 114 98)(75 115 99)(76 116 100)(77 117 91)(78 118 92)(79 119 93)(80 120 94)
(1 19 7 12)(2 20 8 13)(3 16 9 14)(4 17 10 15)(5 18 6 11)(21 36 29 31)(22 37 30 32)(23 38 26 33)(24 39 27 34)(25 40 28 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 77 66 72)(62 78 67 73)(63 79 68 74)(64 80 69 75)(65 71 70 76)(81 95 86 100)(82 96 87 91)(83 97 88 92)(84 98 89 93)(85 99 90 94)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 72)(2 78)(3 74)(4 80)(5 76)(6 71)(7 77)(8 73)(9 79)(10 75)(11 65)(12 61)(13 67)(14 63)(15 69)(16 68)(17 64)(18 70)(19 66)(20 62)(21 92)(22 98)(23 94)(24 100)(25 96)(26 99)(27 95)(28 91)(29 97)(30 93)(31 83)(32 89)(33 85)(34 81)(35 87)(36 88)(37 84)(38 90)(39 86)(40 82)(41 118)(42 114)(43 120)(44 116)(45 112)(46 113)(47 119)(48 115)(49 111)(50 117)(51 103)(52 109)(53 105)(54 101)(55 107)(56 108)(57 104)(58 110)(59 106)(60 102)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 5)(2 4)(6 7)(8 10)(11 19)(12 18)(13 17)(14 16)(15 20)(21 23)(24 25)(26 29)(27 28)(31 38)(32 37)(33 36)(34 40)(35 39)(41 43)(44 45)(46 48)(49 50)(51 58)(52 57)(53 56)(54 60)(55 59)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 80)(68 79)(69 78)(70 77)(81 96)(82 95)(83 94)(84 93)(85 92)(86 91)(87 100)(88 99)(89 98)(90 97)(101 112)(102 111)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)

G:=sub<Sym(120)| (1,45,25)(2,41,21)(3,42,22)(4,43,23)(5,44,24)(6,49,27)(7,50,28)(8,46,29)(9,47,30)(10,48,26)(11,54,34)(12,55,35)(13,51,31)(14,52,32)(15,53,33)(16,57,37)(17,58,38)(18,59,39)(19,60,40)(20,56,36)(61,107,87)(62,108,88)(63,109,89)(64,110,90)(65,101,81)(66,102,82)(67,103,83)(68,104,84)(69,105,85)(70,106,86)(71,111,95)(72,112,96)(73,113,97)(74,114,98)(75,115,99)(76,116,100)(77,117,91)(78,118,92)(79,119,93)(80,120,94), (1,19,7,12)(2,20,8,13)(3,16,9,14)(4,17,10,15)(5,18,6,11)(21,36,29,31)(22,37,30,32)(23,38,26,33)(24,39,27,34)(25,40,28,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,77,66,72)(62,78,67,73)(63,79,68,74)(64,80,69,75)(65,71,70,76)(81,95,86,100)(82,96,87,91)(83,97,88,92)(84,98,89,93)(85,99,90,94)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,72)(2,78)(3,74)(4,80)(5,76)(6,71)(7,77)(8,73)(9,79)(10,75)(11,65)(12,61)(13,67)(14,63)(15,69)(16,68)(17,64)(18,70)(19,66)(20,62)(21,92)(22,98)(23,94)(24,100)(25,96)(26,99)(27,95)(28,91)(29,97)(30,93)(31,83)(32,89)(33,85)(34,81)(35,87)(36,88)(37,84)(38,90)(39,86)(40,82)(41,118)(42,114)(43,120)(44,116)(45,112)(46,113)(47,119)(48,115)(49,111)(50,117)(51,103)(52,109)(53,105)(54,101)(55,107)(56,108)(57,104)(58,110)(59,106)(60,102), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,5)(2,4)(6,7)(8,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,23)(24,25)(26,29)(27,28)(31,38)(32,37)(33,36)(34,40)(35,39)(41,43)(44,45)(46,48)(49,50)(51,58)(52,57)(53,56)(54,60)(55,59)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,100)(88,99)(89,98)(90,97)(101,112)(102,111)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)>;

G:=Group( (1,45,25)(2,41,21)(3,42,22)(4,43,23)(5,44,24)(6,49,27)(7,50,28)(8,46,29)(9,47,30)(10,48,26)(11,54,34)(12,55,35)(13,51,31)(14,52,32)(15,53,33)(16,57,37)(17,58,38)(18,59,39)(19,60,40)(20,56,36)(61,107,87)(62,108,88)(63,109,89)(64,110,90)(65,101,81)(66,102,82)(67,103,83)(68,104,84)(69,105,85)(70,106,86)(71,111,95)(72,112,96)(73,113,97)(74,114,98)(75,115,99)(76,116,100)(77,117,91)(78,118,92)(79,119,93)(80,120,94), (1,19,7,12)(2,20,8,13)(3,16,9,14)(4,17,10,15)(5,18,6,11)(21,36,29,31)(22,37,30,32)(23,38,26,33)(24,39,27,34)(25,40,28,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,77,66,72)(62,78,67,73)(63,79,68,74)(64,80,69,75)(65,71,70,76)(81,95,86,100)(82,96,87,91)(83,97,88,92)(84,98,89,93)(85,99,90,94)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,72)(2,78)(3,74)(4,80)(5,76)(6,71)(7,77)(8,73)(9,79)(10,75)(11,65)(12,61)(13,67)(14,63)(15,69)(16,68)(17,64)(18,70)(19,66)(20,62)(21,92)(22,98)(23,94)(24,100)(25,96)(26,99)(27,95)(28,91)(29,97)(30,93)(31,83)(32,89)(33,85)(34,81)(35,87)(36,88)(37,84)(38,90)(39,86)(40,82)(41,118)(42,114)(43,120)(44,116)(45,112)(46,113)(47,119)(48,115)(49,111)(50,117)(51,103)(52,109)(53,105)(54,101)(55,107)(56,108)(57,104)(58,110)(59,106)(60,102), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,5)(2,4)(6,7)(8,10)(11,19)(12,18)(13,17)(14,16)(15,20)(21,23)(24,25)(26,29)(27,28)(31,38)(32,37)(33,36)(34,40)(35,39)(41,43)(44,45)(46,48)(49,50)(51,58)(52,57)(53,56)(54,60)(55,59)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,80)(68,79)(69,78)(70,77)(81,96)(82,95)(83,94)(84,93)(85,92)(86,91)(87,100)(88,99)(89,98)(90,97)(101,112)(102,111)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113) );

G=PermutationGroup([[(1,45,25),(2,41,21),(3,42,22),(4,43,23),(5,44,24),(6,49,27),(7,50,28),(8,46,29),(9,47,30),(10,48,26),(11,54,34),(12,55,35),(13,51,31),(14,52,32),(15,53,33),(16,57,37),(17,58,38),(18,59,39),(19,60,40),(20,56,36),(61,107,87),(62,108,88),(63,109,89),(64,110,90),(65,101,81),(66,102,82),(67,103,83),(68,104,84),(69,105,85),(70,106,86),(71,111,95),(72,112,96),(73,113,97),(74,114,98),(75,115,99),(76,116,100),(77,117,91),(78,118,92),(79,119,93),(80,120,94)], [(1,19,7,12),(2,20,8,13),(3,16,9,14),(4,17,10,15),(5,18,6,11),(21,36,29,31),(22,37,30,32),(23,38,26,33),(24,39,27,34),(25,40,28,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,77,66,72),(62,78,67,73),(63,79,68,74),(64,80,69,75),(65,71,70,76),(81,95,86,100),(82,96,87,91),(83,97,88,92),(84,98,89,93),(85,99,90,94),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,72),(2,78),(3,74),(4,80),(5,76),(6,71),(7,77),(8,73),(9,79),(10,75),(11,65),(12,61),(13,67),(14,63),(15,69),(16,68),(17,64),(18,70),(19,66),(20,62),(21,92),(22,98),(23,94),(24,100),(25,96),(26,99),(27,95),(28,91),(29,97),(30,93),(31,83),(32,89),(33,85),(34,81),(35,87),(36,88),(37,84),(38,90),(39,86),(40,82),(41,118),(42,114),(43,120),(44,116),(45,112),(46,113),(47,119),(48,115),(49,111),(50,117),(51,103),(52,109),(53,105),(54,101),(55,107),(56,108),(57,104),(58,110),(59,106),(60,102)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,5),(2,4),(6,7),(8,10),(11,19),(12,18),(13,17),(14,16),(15,20),(21,23),(24,25),(26,29),(27,28),(31,38),(32,37),(33,36),(34,40),(35,39),(41,43),(44,45),(46,48),(49,50),(51,58),(52,57),(53,56),(54,60),(55,59),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,80),(68,79),(69,78),(70,77),(81,96),(82,95),(83,94),(84,93),(85,92),(86,91),(87,100),(88,99),(89,98),(90,97),(101,112),(102,111),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113)]])

93 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C5A5B6A6B6C6D6E6F6G6H6I6J8A8B10A10B10C···10H12A12B12C12D12E12F15A15B15C15D20A20B20C20D20E···20J24A24B24C24D30A30B30C30D30E···30P60A···60H60I···60T
order1222223344455666666666688101010···10121212121212151515152020202020···20242424243030303030···3060···6060···60
size112420201122422112244202020202020224···4222244222222224···42020202022224···42···24···4

93 irreducible representations

dim11111111111122222222222222224444
type++++++++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D5D10D10D10C3×D4C3×D4C3×D5C5⋊D4C5⋊D4C6×D5C6×D5C6×D5C3×C5⋊D4C3×C5⋊D4C8⋊C22C3×C8⋊C22D4⋊D10C3×D4⋊D10
kernelC3×D4⋊D10C3×C4.Dic5C3×D4⋊D5C3×Q8⋊D5C6×D20C15×C4○D4D4⋊D10C4.Dic5D4⋊D5Q8⋊D5C2×D20C5×C4○D4C60C2×C30C3×C4○D4C2×C12C3×D4C3×Q8C20C2×C10C4○D4C12C2×C6C2×C4D4Q8C4C22C15C5C3C1
# reps11221122442211222222444444881248

Matrix representation of C3×D4⋊D10 in GL6(𝔽241)

1500000
0150000
001000
000100
000010
000001
,
24000000
02400000
0019715600
00884400
001281284185
001130156200
,
010000
100000
0021312879126
00019847194
008288156113
0082235113156
,
24000000
02400000
00018900
00515100
0023948152
003191189189
,
24000000
010000
001000
005024000
001594241119
0068156156200

G:=sub<GL(6,GF(241))| [15,0,0,0,0,0,0,15,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,197,88,128,113,0,0,156,44,128,0,0,0,0,0,41,156,0,0,0,0,85,200],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,213,0,82,82,0,0,128,198,88,235,0,0,79,47,156,113,0,0,126,194,113,156],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,51,239,3,0,0,189,51,48,191,0,0,0,0,1,189,0,0,0,0,52,189],[240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,50,159,68,0,0,0,240,42,156,0,0,0,0,41,156,0,0,0,0,119,200] >;

C3×D4⋊D10 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes D_{10}
% in TeX

G:=Group("C3xD4:D10");
// GroupNames label

G:=SmallGroup(480,742);
// by ID

G=gap.SmallGroup(480,742);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,590,555,2524,648,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^10=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=b^2*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽