Copied to
clipboard

G = C3×D5×SD16order 480 = 25·3·5

Direct product of C3, D5 and SD16

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D5×SD16, C2427D10, C12030C22, C60.193C23, C85(C6×D5), C405(C2×C6), (C8×D5)⋊4C6, Q8⋊D51C6, Q82(C6×D5), (Q8×D5)⋊4C6, C52(C6×SD16), C40⋊C25C6, D4.D53C6, D4.2(C6×D5), (D4×D5).1C6, (D5×C24)⋊13C2, (C3×Q8)⋊14D10, (C5×SD16)⋊3C6, D20.2(C2×C6), (C6×D5).86D4, C10.30(C6×D4), C6.184(D4×D5), C1520(C2×SD16), Dic102(C2×C6), (C15×SD16)⋊9C2, (C3×D4).26D10, D10.24(C3×D4), C30.343(C2×D4), C20.4(C22×C6), Dic5.8(C3×D4), (C3×Dic5).55D4, (Q8×C15)⋊14C22, (C3×D20).31C22, (D4×C15).26C22, C12.193(C22×D5), (C3×Dic10)⋊17C22, (D5×C12).106C22, (C3×Q8×D5)⋊8C2, C4.4(D5×C2×C6), (C3×D4×D5).4C2, C2.18(C3×D4×D5), C52C86(C2×C6), (C3×Q8⋊D5)⋊9C2, (C5×Q8)⋊2(C2×C6), (C5×D4).2(C2×C6), (C3×C40⋊C2)⋊13C2, (C3×D4.D5)⋊11C2, (C4×D5).17(C2×C6), (C3×C52C8)⋊39C22, SmallGroup(480,706)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D5×SD16
C1C5C10C20C60D5×C12C3×D4×D5 — C3×D5×SD16
C5C10C20 — C3×D5×SD16
C1C6C12C3×SD16

Generators and relations for C3×D5×SD16
 G = < a,b,c,d,e | a3=b5=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >

Subgroups: 528 in 136 conjugacy classes, 58 normal (54 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C8, C2×C4, D4, D4, Q8, Q8, C23, D5, D5, C10, C10, C12, C12, C2×C6, C15, C2×C8, SD16, SD16, C2×D4, C2×Q8, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C24, C24, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C3×D5, C3×D5, C30, C30, C2×SD16, C52C8, C40, Dic10, Dic10, C4×D5, C4×D5, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C2×C24, C3×SD16, C3×SD16, C6×D4, C6×Q8, C3×Dic5, C3×Dic5, C60, C60, C6×D5, C6×D5, C2×C30, C8×D5, C40⋊C2, D4.D5, Q8⋊D5, C5×SD16, D4×D5, Q8×D5, C6×SD16, C3×C52C8, C120, C3×Dic10, C3×Dic10, D5×C12, D5×C12, C3×D20, C3×C5⋊D4, D4×C15, Q8×C15, D5×C2×C6, D5×SD16, D5×C24, C3×C40⋊C2, C3×D4.D5, C3×Q8⋊D5, C15×SD16, C3×D4×D5, C3×Q8×D5, C3×D5×SD16
Quotients: C1, C2, C3, C22, C6, D4, C23, D5, C2×C6, SD16, C2×D4, D10, C3×D4, C22×C6, C3×D5, C2×SD16, C22×D5, C3×SD16, C6×D4, C6×D5, D4×D5, C6×SD16, D5×C2×C6, D5×SD16, C3×D4×D5, C3×D5×SD16

Smallest permutation representation of C3×D5×SD16
On 120 points
Generators in S120
(1 104 65)(2 97 66)(3 98 67)(4 99 68)(5 100 69)(6 101 70)(7 102 71)(8 103 72)(9 85 106)(10 86 107)(11 87 108)(12 88 109)(13 81 110)(14 82 111)(15 83 112)(16 84 105)(17 42 58)(18 43 59)(19 44 60)(20 45 61)(21 46 62)(22 47 63)(23 48 64)(24 41 57)(25 54 75)(26 55 76)(27 56 77)(28 49 78)(29 50 79)(30 51 80)(31 52 73)(32 53 74)(33 95 120)(34 96 113)(35 89 114)(36 90 115)(37 91 116)(38 92 117)(39 93 118)(40 94 119)
(1 54 46 38 108)(2 55 47 39 109)(3 56 48 40 110)(4 49 41 33 111)(5 50 42 34 112)(6 51 43 35 105)(7 52 44 36 106)(8 53 45 37 107)(9 102 73 60 90)(10 103 74 61 91)(11 104 75 62 92)(12 97 76 63 93)(13 98 77 64 94)(14 99 78 57 95)(15 100 79 58 96)(16 101 80 59 89)(17 113 83 69 29)(18 114 84 70 30)(19 115 85 71 31)(20 116 86 72 32)(21 117 87 65 25)(22 118 88 66 26)(23 119 81 67 27)(24 120 82 68 28)
(1 108)(2 109)(3 110)(4 111)(5 112)(6 105)(7 106)(8 107)(9 102)(10 103)(11 104)(12 97)(13 98)(14 99)(15 100)(16 101)(25 117)(26 118)(27 119)(28 120)(29 113)(30 114)(31 115)(32 116)(33 49)(34 50)(35 51)(36 52)(37 53)(38 54)(39 55)(40 56)(65 87)(66 88)(67 81)(68 82)(69 83)(70 84)(71 85)(72 86)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 89)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(2 4)(3 7)(6 8)(9 13)(10 16)(12 14)(18 20)(19 23)(22 24)(26 28)(27 31)(30 32)(33 39)(35 37)(36 40)(41 47)(43 45)(44 48)(49 55)(51 53)(52 56)(57 63)(59 61)(60 64)(66 68)(67 71)(70 72)(73 77)(74 80)(76 78)(81 85)(82 88)(84 86)(89 91)(90 94)(93 95)(97 99)(98 102)(101 103)(105 107)(106 110)(109 111)(114 116)(115 119)(118 120)

G:=sub<Sym(120)| (1,104,65)(2,97,66)(3,98,67)(4,99,68)(5,100,69)(6,101,70)(7,102,71)(8,103,72)(9,85,106)(10,86,107)(11,87,108)(12,88,109)(13,81,110)(14,82,111)(15,83,112)(16,84,105)(17,42,58)(18,43,59)(19,44,60)(20,45,61)(21,46,62)(22,47,63)(23,48,64)(24,41,57)(25,54,75)(26,55,76)(27,56,77)(28,49,78)(29,50,79)(30,51,80)(31,52,73)(32,53,74)(33,95,120)(34,96,113)(35,89,114)(36,90,115)(37,91,116)(38,92,117)(39,93,118)(40,94,119), (1,54,46,38,108)(2,55,47,39,109)(3,56,48,40,110)(4,49,41,33,111)(5,50,42,34,112)(6,51,43,35,105)(7,52,44,36,106)(8,53,45,37,107)(9,102,73,60,90)(10,103,74,61,91)(11,104,75,62,92)(12,97,76,63,93)(13,98,77,64,94)(14,99,78,57,95)(15,100,79,58,96)(16,101,80,59,89)(17,113,83,69,29)(18,114,84,70,30)(19,115,85,71,31)(20,116,86,72,32)(21,117,87,65,25)(22,118,88,66,26)(23,119,81,67,27)(24,120,82,68,28), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,102)(10,103)(11,104)(12,97)(13,98)(14,99)(15,100)(16,101)(25,117)(26,118)(27,119)(28,120)(29,113)(30,114)(31,115)(32,116)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(57,63)(59,61)(60,64)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78)(81,85)(82,88)(84,86)(89,91)(90,94)(93,95)(97,99)(98,102)(101,103)(105,107)(106,110)(109,111)(114,116)(115,119)(118,120)>;

G:=Group( (1,104,65)(2,97,66)(3,98,67)(4,99,68)(5,100,69)(6,101,70)(7,102,71)(8,103,72)(9,85,106)(10,86,107)(11,87,108)(12,88,109)(13,81,110)(14,82,111)(15,83,112)(16,84,105)(17,42,58)(18,43,59)(19,44,60)(20,45,61)(21,46,62)(22,47,63)(23,48,64)(24,41,57)(25,54,75)(26,55,76)(27,56,77)(28,49,78)(29,50,79)(30,51,80)(31,52,73)(32,53,74)(33,95,120)(34,96,113)(35,89,114)(36,90,115)(37,91,116)(38,92,117)(39,93,118)(40,94,119), (1,54,46,38,108)(2,55,47,39,109)(3,56,48,40,110)(4,49,41,33,111)(5,50,42,34,112)(6,51,43,35,105)(7,52,44,36,106)(8,53,45,37,107)(9,102,73,60,90)(10,103,74,61,91)(11,104,75,62,92)(12,97,76,63,93)(13,98,77,64,94)(14,99,78,57,95)(15,100,79,58,96)(16,101,80,59,89)(17,113,83,69,29)(18,114,84,70,30)(19,115,85,71,31)(20,116,86,72,32)(21,117,87,65,25)(22,118,88,66,26)(23,119,81,67,27)(24,120,82,68,28), (1,108)(2,109)(3,110)(4,111)(5,112)(6,105)(7,106)(8,107)(9,102)(10,103)(11,104)(12,97)(13,98)(14,99)(15,100)(16,101)(25,117)(26,118)(27,119)(28,120)(29,113)(30,114)(31,115)(32,116)(33,49)(34,50)(35,51)(36,52)(37,53)(38,54)(39,55)(40,56)(65,87)(66,88)(67,81)(68,82)(69,83)(70,84)(71,85)(72,86)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,4)(3,7)(6,8)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(26,28)(27,31)(30,32)(33,39)(35,37)(36,40)(41,47)(43,45)(44,48)(49,55)(51,53)(52,56)(57,63)(59,61)(60,64)(66,68)(67,71)(70,72)(73,77)(74,80)(76,78)(81,85)(82,88)(84,86)(89,91)(90,94)(93,95)(97,99)(98,102)(101,103)(105,107)(106,110)(109,111)(114,116)(115,119)(118,120) );

G=PermutationGroup([[(1,104,65),(2,97,66),(3,98,67),(4,99,68),(5,100,69),(6,101,70),(7,102,71),(8,103,72),(9,85,106),(10,86,107),(11,87,108),(12,88,109),(13,81,110),(14,82,111),(15,83,112),(16,84,105),(17,42,58),(18,43,59),(19,44,60),(20,45,61),(21,46,62),(22,47,63),(23,48,64),(24,41,57),(25,54,75),(26,55,76),(27,56,77),(28,49,78),(29,50,79),(30,51,80),(31,52,73),(32,53,74),(33,95,120),(34,96,113),(35,89,114),(36,90,115),(37,91,116),(38,92,117),(39,93,118),(40,94,119)], [(1,54,46,38,108),(2,55,47,39,109),(3,56,48,40,110),(4,49,41,33,111),(5,50,42,34,112),(6,51,43,35,105),(7,52,44,36,106),(8,53,45,37,107),(9,102,73,60,90),(10,103,74,61,91),(11,104,75,62,92),(12,97,76,63,93),(13,98,77,64,94),(14,99,78,57,95),(15,100,79,58,96),(16,101,80,59,89),(17,113,83,69,29),(18,114,84,70,30),(19,115,85,71,31),(20,116,86,72,32),(21,117,87,65,25),(22,118,88,66,26),(23,119,81,67,27),(24,120,82,68,28)], [(1,108),(2,109),(3,110),(4,111),(5,112),(6,105),(7,106),(8,107),(9,102),(10,103),(11,104),(12,97),(13,98),(14,99),(15,100),(16,101),(25,117),(26,118),(27,119),(28,120),(29,113),(30,114),(31,115),(32,116),(33,49),(34,50),(35,51),(36,52),(37,53),(38,54),(39,55),(40,56),(65,87),(66,88),(67,81),(68,82),(69,83),(70,84),(71,85),(72,86),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,89)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(2,4),(3,7),(6,8),(9,13),(10,16),(12,14),(18,20),(19,23),(22,24),(26,28),(27,31),(30,32),(33,39),(35,37),(36,40),(41,47),(43,45),(44,48),(49,55),(51,53),(52,56),(57,63),(59,61),(60,64),(66,68),(67,71),(70,72),(73,77),(74,80),(76,78),(81,85),(82,88),(84,86),(89,91),(90,94),(93,95),(97,99),(98,102),(101,103),(105,107),(106,110),(109,111),(114,116),(115,119),(118,120)]])

84 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D5A5B6A6B6C6D6E6F6G6H6I6J8A8B8C8D10A10B10C10D12A12B12C12D12E12F12G12H15A15B15C15D20A20B20C20D24A24B24C24D24E24F24G24H30A30B30C30D30E30F30G30H40A40B40C40D60A60B60C60D60E60F60G60H120A···120H
order1222223344445566666666668888101010101212121212121212151515152020202024242424242424243030303030303030404040406060606060606060120···120
size11455201124102022114455552020221010228822441010202022224488222210101010222288884444444488884···4

84 irreducible representations

dim1111111111111111222222222222224444
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D4D4D5SD16D10D10D10C3×D4C3×D4C3×D5C3×SD16C6×D5C6×D5C6×D5D4×D5D5×SD16C3×D4×D5C3×D5×SD16
kernelC3×D5×SD16D5×C24C3×C40⋊C2C3×D4.D5C3×Q8⋊D5C15×SD16C3×D4×D5C3×Q8×D5D5×SD16C8×D5C40⋊C2D4.D5Q8⋊D5C5×SD16D4×D5Q8×D5C3×Dic5C6×D5C3×SD16C3×D5C24C3×D4C3×Q8Dic5D10SD16D5C8D4Q8C6C3C2C1
# reps1111111122222222112422222484442448

Matrix representation of C3×D5×SD16 in GL4(𝔽241) generated by

15000
01500
00150
00015
,
51100
240000
0010
0001
,
15100
024000
0010
0001
,
240000
024000
001919
0022219
,
1000
0100
0010
000240
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[51,240,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,51,240,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,19,222,0,0,19,19],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,240] >;

C3×D5×SD16 in GAP, Magma, Sage, TeX

C_3\times D_5\times {\rm SD}_{16}
% in TeX

G:=Group("C3xD5xSD16");
// GroupNames label

G:=SmallGroup(480,706);
// by ID

G=gap.SmallGroup(480,706);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,303,268,1271,648,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽