# Extensions 1→N→G→Q→1 with N=C3×C4○D4 and Q=C10

Direct product G=N×Q with N=C3×C4○D4 and Q=C10
dρLabelID
C4○D4×C30240C4oD4xC30480,1183

Semidirect products G=N:Q with N=C3×C4○D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×C4○D4)⋊1C10 = C5×D4⋊D6φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):1C10480,828
(C3×C4○D4)⋊2C10 = C5×Q8.13D6φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):2C10480,829
(C3×C4○D4)⋊3C10 = C5×S3×C4○D4φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):3C10480,1160
(C3×C4○D4)⋊4C10 = C5×D4○D12φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):4C10480,1161
(C3×C4○D4)⋊5C10 = C5×Q8○D12φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):5C10480,1162
(C3×C4○D4)⋊6C10 = C15×C4○D8φ: C10/C5C2 ⊆ Out C3×C4○D42402(C3xC4oD4):6C10480,940
(C3×C4○D4)⋊7C10 = C15×C8⋊C22φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):7C10480,941
(C3×C4○D4)⋊8C10 = C15×2+ 1+4φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4):8C10480,1184
(C3×C4○D4)⋊9C10 = C15×2- 1+4φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4):9C10480,1185

Non-split extensions G=N.Q with N=C3×C4○D4 and Q=C10
extensionφ:Q→Out NdρLabelID
(C3×C4○D4).1C10 = C5×Q83Dic3φ: C10/C5C2 ⊆ Out C3×C4○D41204(C3xC4oD4).1C10480,156
(C3×C4○D4).2C10 = C5×D4.Dic3φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4).2C10480,827
(C3×C4○D4).3C10 = C5×Q8.14D6φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4).3C10480,830
(C3×C4○D4).4C10 = C15×C4≀C2φ: C10/C5C2 ⊆ Out C3×C4○D41202(C3xC4oD4).4C10480,207
(C3×C4○D4).5C10 = C15×C8.C22φ: C10/C5C2 ⊆ Out C3×C4○D42404(C3xC4oD4).5C10480,942
(C3×C4○D4).6C10 = C15×C8○D4φ: trivial image2402(C3xC4oD4).6C10480,936

׿
×
𝔽