Copied to
clipboard

G = C5×D4○D12order 480 = 25·3·5

Direct product of C5 and D4○D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×D4○D12, C30.95C24, C60.242C23, C15142+ 1+4, (C5×D4)⋊30D6, (S3×D4)⋊5C10, D48(S3×C10), (C2×C20)⋊23D6, Q88(S3×C10), (C5×Q8)⋊29D6, C4○D128C10, (C2×D12)⋊13C10, D1211(C2×C10), (C10×D12)⋊29C2, (C2×C60)⋊30C22, Q83S35C10, (S3×C20)⋊15C22, Dic612(C2×C10), C32(C5×2+ 1+4), (C5×D12)⋊41C22, (D4×C15)⋊40C22, C6.12(C23×C10), C10.80(S3×C23), (Q8×C15)⋊35C22, D6.6(C22×C10), (S3×C10).42C23, C20.239(C22×S3), (C2×C30).260C23, C12.26(C22×C10), (C5×Dic6)⋊39C22, Dic3.8(C22×C10), (C5×Dic3).44C23, (C5×S3×D4)⋊12C2, (C2×C4)⋊4(S3×C10), C4○D45(C5×S3), C4.26(S3×C2×C10), (C4×S3)⋊2(C2×C10), (C2×C12)⋊5(C2×C10), (C3×C4○D4)⋊4C10, (C5×C4○D4)⋊12S3, (C3×D4)⋊9(C2×C10), C3⋊D45(C2×C10), (C3×Q8)⋊8(C2×C10), C22.4(S3×C2×C10), (C5×C4○D12)⋊18C2, (C15×C4○D4)⋊14C2, (S3×C2×C10)⋊16C22, C2.13(S3×C22×C10), (C22×S3)⋊4(C2×C10), (C5×Q83S3)⋊12C2, (C5×C3⋊D4)⋊21C22, (C2×C6).4(C22×C10), (C2×C10).23(C22×S3), SmallGroup(480,1161)

Series: Derived Chief Lower central Upper central

C1C6 — C5×D4○D12
C1C3C6C30S3×C10S3×C2×C10C5×S3×D4 — C5×D4○D12
C3C6 — C5×D4○D12
C1C10C5×C4○D4

Generators and relations for C5×D4○D12
 G = < a,b,c,d,e | a5=b4=c2=e2=1, d6=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=b2d5 >

Subgroups: 788 in 332 conjugacy classes, 170 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C10, C10, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×D4, C4○D4, C4○D4, C20, C20, C20, C2×C10, C2×C10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C5×S3, C30, C30, 2+ 1+4, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C5×Q8, C22×C10, C2×D12, C4○D12, S3×D4, Q83S3, C3×C4○D4, C5×Dic3, C60, C60, S3×C10, S3×C10, C2×C30, D4×C10, C5×C4○D4, C5×C4○D4, D4○D12, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×C60, D4×C15, Q8×C15, S3×C2×C10, C5×2+ 1+4, C10×D12, C5×C4○D12, C5×S3×D4, C5×Q83S3, C15×C4○D4, C5×D4○D12
Quotients: C1, C2, C22, C5, S3, C23, C10, D6, C24, C2×C10, C22×S3, C5×S3, 2+ 1+4, C22×C10, S3×C23, S3×C10, C23×C10, D4○D12, S3×C2×C10, C5×2+ 1+4, S3×C22×C10, C5×D4○D12

Smallest permutation representation of C5×D4○D12
On 120 points
Generators in S120
(1 70 21 114 33)(2 71 22 115 34)(3 72 23 116 35)(4 61 24 117 36)(5 62 13 118 25)(6 63 14 119 26)(7 64 15 120 27)(8 65 16 109 28)(9 66 17 110 29)(10 67 18 111 30)(11 68 19 112 31)(12 69 20 113 32)(37 98 58 93 83)(38 99 59 94 84)(39 100 60 95 73)(40 101 49 96 74)(41 102 50 85 75)(42 103 51 86 76)(43 104 52 87 77)(44 105 53 88 78)(45 106 54 89 79)(46 107 55 90 80)(47 108 56 91 81)(48 97 57 92 82)
(1 60 7 54)(2 49 8 55)(3 50 9 56)(4 51 10 57)(5 52 11 58)(6 53 12 59)(13 77 19 83)(14 78 20 84)(15 79 21 73)(16 80 22 74)(17 81 23 75)(18 82 24 76)(25 104 31 98)(26 105 32 99)(27 106 33 100)(28 107 34 101)(29 108 35 102)(30 97 36 103)(37 118 43 112)(38 119 44 113)(39 120 45 114)(40 109 46 115)(41 110 47 116)(42 111 48 117)(61 86 67 92)(62 87 68 93)(63 88 69 94)(64 89 70 95)(65 90 71 96)(66 91 72 85)
(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(73 79)(74 80)(75 81)(76 82)(77 83)(78 84)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)(97 103)(98 104)(99 105)(100 106)(101 107)(102 108)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 16)(14 15)(17 24)(18 23)(19 22)(20 21)(25 28)(26 27)(29 36)(30 35)(31 34)(32 33)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 58)(50 57)(51 56)(52 55)(53 54)(59 60)(61 66)(62 65)(63 64)(67 72)(68 71)(69 70)(73 84)(74 83)(75 82)(76 81)(77 80)(78 79)(85 92)(86 91)(87 90)(88 89)(93 96)(94 95)(97 102)(98 101)(99 100)(103 108)(104 107)(105 106)(109 118)(110 117)(111 116)(112 115)(113 114)(119 120)

G:=sub<Sym(120)| (1,70,21,114,33)(2,71,22,115,34)(3,72,23,116,35)(4,61,24,117,36)(5,62,13,118,25)(6,63,14,119,26)(7,64,15,120,27)(8,65,16,109,28)(9,66,17,110,29)(10,67,18,111,30)(11,68,19,112,31)(12,69,20,113,32)(37,98,58,93,83)(38,99,59,94,84)(39,100,60,95,73)(40,101,49,96,74)(41,102,50,85,75)(42,103,51,86,76)(43,104,52,87,77)(44,105,53,88,78)(45,106,54,89,79)(46,107,55,90,80)(47,108,56,91,81)(48,97,57,92,82), (1,60,7,54)(2,49,8,55)(3,50,9,56)(4,51,10,57)(5,52,11,58)(6,53,12,59)(13,77,19,83)(14,78,20,84)(15,79,21,73)(16,80,22,74)(17,81,23,75)(18,82,24,76)(25,104,31,98)(26,105,32,99)(27,106,33,100)(28,107,34,101)(29,108,35,102)(30,97,36,103)(37,118,43,112)(38,119,44,113)(39,120,45,114)(40,109,46,115)(41,110,47,116)(42,111,48,117)(61,86,67,92)(62,87,68,93)(63,88,69,94)(64,89,70,95)(65,90,71,96)(66,91,72,85), (37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(97,103)(98,104)(99,105)(100,106)(101,107)(102,108), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,16)(14,15)(17,24)(18,23)(19,22)(20,21)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,92)(86,91)(87,90)(88,89)(93,96)(94,95)(97,102)(98,101)(99,100)(103,108)(104,107)(105,106)(109,118)(110,117)(111,116)(112,115)(113,114)(119,120)>;

G:=Group( (1,70,21,114,33)(2,71,22,115,34)(3,72,23,116,35)(4,61,24,117,36)(5,62,13,118,25)(6,63,14,119,26)(7,64,15,120,27)(8,65,16,109,28)(9,66,17,110,29)(10,67,18,111,30)(11,68,19,112,31)(12,69,20,113,32)(37,98,58,93,83)(38,99,59,94,84)(39,100,60,95,73)(40,101,49,96,74)(41,102,50,85,75)(42,103,51,86,76)(43,104,52,87,77)(44,105,53,88,78)(45,106,54,89,79)(46,107,55,90,80)(47,108,56,91,81)(48,97,57,92,82), (1,60,7,54)(2,49,8,55)(3,50,9,56)(4,51,10,57)(5,52,11,58)(6,53,12,59)(13,77,19,83)(14,78,20,84)(15,79,21,73)(16,80,22,74)(17,81,23,75)(18,82,24,76)(25,104,31,98)(26,105,32,99)(27,106,33,100)(28,107,34,101)(29,108,35,102)(30,97,36,103)(37,118,43,112)(38,119,44,113)(39,120,45,114)(40,109,46,115)(41,110,47,116)(42,111,48,117)(61,86,67,92)(62,87,68,93)(63,88,69,94)(64,89,70,95)(65,90,71,96)(66,91,72,85), (37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(73,79)(74,80)(75,81)(76,82)(77,83)(78,84)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(97,103)(98,104)(99,105)(100,106)(101,107)(102,108), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,16)(14,15)(17,24)(18,23)(19,22)(20,21)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60)(61,66)(62,65)(63,64)(67,72)(68,71)(69,70)(73,84)(74,83)(75,82)(76,81)(77,80)(78,79)(85,92)(86,91)(87,90)(88,89)(93,96)(94,95)(97,102)(98,101)(99,100)(103,108)(104,107)(105,106)(109,118)(110,117)(111,116)(112,115)(113,114)(119,120) );

G=PermutationGroup([[(1,70,21,114,33),(2,71,22,115,34),(3,72,23,116,35),(4,61,24,117,36),(5,62,13,118,25),(6,63,14,119,26),(7,64,15,120,27),(8,65,16,109,28),(9,66,17,110,29),(10,67,18,111,30),(11,68,19,112,31),(12,69,20,113,32),(37,98,58,93,83),(38,99,59,94,84),(39,100,60,95,73),(40,101,49,96,74),(41,102,50,85,75),(42,103,51,86,76),(43,104,52,87,77),(44,105,53,88,78),(45,106,54,89,79),(46,107,55,90,80),(47,108,56,91,81),(48,97,57,92,82)], [(1,60,7,54),(2,49,8,55),(3,50,9,56),(4,51,10,57),(5,52,11,58),(6,53,12,59),(13,77,19,83),(14,78,20,84),(15,79,21,73),(16,80,22,74),(17,81,23,75),(18,82,24,76),(25,104,31,98),(26,105,32,99),(27,106,33,100),(28,107,34,101),(29,108,35,102),(30,97,36,103),(37,118,43,112),(38,119,44,113),(39,120,45,114),(40,109,46,115),(41,110,47,116),(42,111,48,117),(61,86,67,92),(62,87,68,93),(63,88,69,94),(64,89,70,95),(65,90,71,96),(66,91,72,85)], [(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(73,79),(74,80),(75,81),(76,82),(77,83),(78,84),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96),(97,103),(98,104),(99,105),(100,106),(101,107),(102,108)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,16),(14,15),(17,24),(18,23),(19,22),(20,21),(25,28),(26,27),(29,36),(30,35),(31,34),(32,33),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,58),(50,57),(51,56),(52,55),(53,54),(59,60),(61,66),(62,65),(63,64),(67,72),(68,71),(69,70),(73,84),(74,83),(75,82),(76,81),(77,80),(78,79),(85,92),(86,91),(87,90),(88,89),(93,96),(94,95),(97,102),(98,101),(99,100),(103,108),(104,107),(105,106),(109,118),(110,117),(111,116),(112,115),(113,114),(119,120)]])

135 conjugacy classes

class 1 2A2B2C2D2E···2J 3 4A4B4C4D4E4F5A5B5C5D6A6B6C6D10A10B10C10D10E···10P10Q···10AN12A12B12C12D12E15A15B15C15D20A···20P20Q···20X30A30B30C30D30E···30P60A···60H60I···60T
order122222···23444444555566661010101010···1010···1012121212121515151520···2020···203030303030···3060···6060···60
size112226···622222661111244411112···26···62244422222···26···622224···42···24···4

135 irreducible representations

dim111111111111222222224444
type++++++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10S3D6D6D6C5×S3S3×C10S3×C10S3×C102+ 1+4D4○D12C5×2+ 1+4C5×D4○D12
kernelC5×D4○D12C10×D12C5×C4○D12C5×S3×D4C5×Q83S3C15×C4○D4D4○D12C2×D12C4○D12S3×D4Q83S3C3×C4○D4C5×C4○D4C2×C20C5×D4C5×Q8C4○D4C2×C4D4Q8C15C5C3C1
# reps13362141212248413314121241248

Matrix representation of C5×D4○D12 in GL4(𝔽61) generated by

34000
03400
00340
00034
,
1020
0102
600600
060060
,
1000
0100
600600
060060
,
462300
382300
004623
003823
,
462300
381500
004623
003815
G:=sub<GL(4,GF(61))| [34,0,0,0,0,34,0,0,0,0,34,0,0,0,0,34],[1,0,60,0,0,1,0,60,2,0,60,0,0,2,0,60],[1,0,60,0,0,1,0,60,0,0,60,0,0,0,0,60],[46,38,0,0,23,23,0,0,0,0,46,38,0,0,23,23],[46,38,0,0,23,15,0,0,0,0,46,38,0,0,23,15] >;

C5×D4○D12 in GAP, Magma, Sage, TeX

C_5\times D_4\circ D_{12}
% in TeX

G:=Group("C5xD4oD12");
// GroupNames label

G:=SmallGroup(480,1161);
// by ID

G=gap.SmallGroup(480,1161);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,891,2467,304,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=e^2=1,d^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=b^2*d^5>;
// generators/relations

׿
×
𝔽