direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C4○D4, D4○C12, Q8○C12, D4⋊2C6, Q8⋊3C6, C6.13C23, C12.21C22, C4○(C3×D4), C4○(C3×Q8), (C2×C4)⋊3C6, C12○(C3×D4), C12○(C3×Q8), (C2×C12)⋊7C2, (C3×D4)⋊5C2, C4.5(C2×C6), (C3×Q8)⋊5C2, C22.(C2×C6), C2.3(C22×C6), (C2×C6).2C22, SmallGroup(48,47)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C4○D4
G = < a,b,c,d | a3=b4=d2=1, c2=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c >
Character table of C3×C4○D4
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | |
size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ3 | ζ65 | ζ6 | ζ65 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ11 | 1 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ12 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ32 | ζ3 | ζ6 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | linear of order 6 |
ρ13 | 1 | 1 | 1 | -1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ3 | ζ6 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ14 | 1 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ15 | 1 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ16 | 1 | 1 | 1 | -1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ32 | ζ65 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | ζ3 | linear of order 6 |
ρ17 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ18 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | ζ65 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ19 | 1 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | 1 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ32 | ζ6 | ζ65 | ζ6 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | ζ32 | linear of order 6 |
ρ20 | 1 | 1 | 1 | 1 | -1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ65 | ζ6 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ6 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | linear of order 6 |
ρ21 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ3 | ζ32 | ζ65 | ζ6 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ6 | ζ32 | ζ3 | ζ65 | linear of order 6 |
ρ22 | 1 | 1 | 1 | 1 | -1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ6 | ζ65 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ65 | ζ65 | ζ6 | ζ65 | ζ3 | ζ32 | ζ6 | linear of order 6 |
ρ23 | 1 | 1 | -1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 6 |
ρ24 | 1 | 1 | -1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 6 |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | -2i | 2i | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2i | -2i | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ27 | 2 | -2 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | -2i | 2i | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ3 | 2ζ43ζ3 | 2ζ4ζ32 | 2ζ43ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 2 | -2 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | -2i | 2i | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ4ζ32 | 2ζ43ζ32 | 2ζ4ζ3 | 2ζ43ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 2 | -2 | 0 | 0 | 0 | -1+√-3 | -1-√-3 | 2i | -2i | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ3 | 2ζ4ζ3 | 2ζ43ζ32 | 2ζ4ζ32 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 2 | -2 | 0 | 0 | 0 | -1-√-3 | -1+√-3 | 2i | -2i | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ43ζ32 | 2ζ4ζ32 | 2ζ43ζ3 | 2ζ4ζ3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 13 11)(2 14 12)(3 15 9)(4 16 10)(5 18 21)(6 19 22)(7 20 23)(8 17 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 21 3 23)(2 22 4 24)(5 15 7 13)(6 16 8 14)(9 20 11 18)(10 17 12 19)
(1 23)(2 24)(3 21)(4 22)(5 15)(6 16)(7 13)(8 14)(9 18)(10 19)(11 20)(12 17)
G:=sub<Sym(24)| (1,13,11)(2,14,12)(3,15,9)(4,16,10)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,21,3,23)(2,22,4,24)(5,15,7,13)(6,16,8,14)(9,20,11,18)(10,17,12,19), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17)>;
G:=Group( (1,13,11)(2,14,12)(3,15,9)(4,16,10)(5,18,21)(6,19,22)(7,20,23)(8,17,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,21,3,23)(2,22,4,24)(5,15,7,13)(6,16,8,14)(9,20,11,18)(10,17,12,19), (1,23)(2,24)(3,21)(4,22)(5,15)(6,16)(7,13)(8,14)(9,18)(10,19)(11,20)(12,17) );
G=PermutationGroup([[(1,13,11),(2,14,12),(3,15,9),(4,16,10),(5,18,21),(6,19,22),(7,20,23),(8,17,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,21,3,23),(2,22,4,24),(5,15,7,13),(6,16,8,14),(9,20,11,18),(10,17,12,19)], [(1,23),(2,24),(3,21),(4,22),(5,15),(6,16),(7,13),(8,14),(9,18),(10,19),(11,20),(12,17)]])
G:=TransitiveGroup(24,17);
C3×C4○D4 is a maximal subgroup of
Q8⋊3Dic3 D4.Dic3 D4⋊D6 Q8.13D6 Q8.14D6 D4○D12 Q8○D12 Q8.C18 2- 1+4⋊3C6 D28⋊6C6 D4⋊2F7 Q8⋊3F7
C3×C4○D4 is a maximal quotient of
D4×C12 Q8×C12 D28⋊6C6 D4⋊2F7 Q8⋊3F7
Matrix representation of C3×C4○D4 ►in GL2(𝔽13) generated by
3 | 0 |
0 | 3 |
5 | 0 |
0 | 5 |
8 | 0 |
0 | 5 |
0 | 5 |
8 | 0 |
G:=sub<GL(2,GF(13))| [3,0,0,3],[5,0,0,5],[8,0,0,5],[0,8,5,0] >;
C3×C4○D4 in GAP, Magma, Sage, TeX
C_3\times C_4\circ D_4
% in TeX
G:=Group("C3xC4oD4");
// GroupNames label
G:=SmallGroup(48,47);
// by ID
G=gap.SmallGroup(48,47);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-2,261,102]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^4=d^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations
Export
Subgroup lattice of C3×C4○D4 in TeX
Character table of C3×C4○D4 in TeX