Extensions 1→N→G→Q→1 with N=C2×C4 and Q=Dic15

Direct product G=N×Q with N=C2×C4 and Q=Dic15
dρLabelID
C2×C4×Dic15480C2xC4xDic15480,887

Semidirect products G=N:Q with N=C2×C4 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊Dic15 = C23.7D30φ: Dic15/C15C4 ⊆ Aut C2×C41204(C2xC4):Dic15480,194
(C2×C4)⋊2Dic15 = C30.29C42φ: Dic15/C30C2 ⊆ Aut C2×C4480(C2xC4):2Dic15480,191
(C2×C4)⋊3Dic15 = C2×C605C4φ: Dic15/C30C2 ⊆ Aut C2×C4480(C2xC4):3Dic15480,890
(C2×C4)⋊4Dic15 = C23.26D30φ: Dic15/C30C2 ⊆ Aut C2×C4240(C2xC4):4Dic15480,891

Non-split extensions G=N.Q with N=C2×C4 and Q=Dic15
extensionφ:Q→Aut NdρLabelID
(C2×C4).Dic15 = C60.10D4φ: Dic15/C15C4 ⊆ Aut C2×C42404(C2xC4).Dic15480,196
(C2×C4).2Dic15 = C42.D15φ: Dic15/C30C2 ⊆ Aut C2×C4480(C2xC4).2Dic15480,163
(C2×C4).3Dic15 = C605C8φ: Dic15/C30C2 ⊆ Aut C2×C4480(C2xC4).3Dic15480,164
(C2×C4).4Dic15 = C60.212D4φ: Dic15/C30C2 ⊆ Aut C2×C4240(C2xC4).4Dic15480,190
(C2×C4).5Dic15 = C60.7C8φ: Dic15/C30C2 ⊆ Aut C2×C42402(C2xC4).5Dic15480,172
(C2×C4).6Dic15 = C2×C60.7C4φ: Dic15/C30C2 ⊆ Aut C2×C4240(C2xC4).6Dic15480,886
(C2×C4).7Dic15 = C4×C153C8central extension (φ=1)480(C2xC4).7Dic15480,162
(C2×C4).8Dic15 = C2×C153C16central extension (φ=1)480(C2xC4).8Dic15480,171
(C2×C4).9Dic15 = C22×C153C8central extension (φ=1)480(C2xC4).9Dic15480,885

׿
×
𝔽