Extensions 1→N→G→Q→1 with N=C3 and Q=D10⋊D4

Direct product G=N×Q with N=C3 and Q=D10⋊D4
dρLabelID
C3×D10⋊D4240C3xD10:D4480,677

Semidirect products G=N:Q with N=C3 and Q=D10⋊D4
extensionφ:Q→Aut NdρLabelID
C31(D10⋊D4) = D30⋊D4φ: D10⋊D4/C10.D4C2 ⊆ Aut C3240C3:1(D10:D4)480,496
C32(D10⋊D4) = D3012D4φ: D10⋊D4/D10⋊C4C2 ⊆ Aut C3240C3:2(D10:D4)480,537
C33(D10⋊D4) = D309D4φ: D10⋊D4/C5×C22⋊C4C2 ⊆ Aut C3240C3:3(D10:D4)480,849
C34(D10⋊D4) = D10⋊D12φ: D10⋊D4/C2×C4×D5C2 ⊆ Aut C3240C3:4(D10:D4)480,524
C35(D10⋊D4) = Dic15⋊D4φ: D10⋊D4/C2×D20C2 ⊆ Aut C3240C3:5(D10:D4)480,484
C36(D10⋊D4) = D306D4φ: D10⋊D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:6(D10:D4)480,609
C37(D10⋊D4) = Dic153D4φ: D10⋊D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:7(D10:D4)480,626


׿
×
𝔽