Extensions 1→N→G→Q→1 with N=C3 and Q=C202D4

Direct product G=N×Q with N=C3 and Q=C202D4
dρLabelID
C3×C202D4240C3xC20:2D4480,731

Semidirect products G=N:Q with N=C3 and Q=C202D4
extensionφ:Q→Aut NdρLabelID
C31(C202D4) = C202D12φ: C202D4/C4⋊Dic5C2 ⊆ Aut C3240C3:1(C20:2D4)480,542
C32(C202D4) = D307D4φ: C202D4/C23.D5C2 ⊆ Aut C3240C3:2(C20:2D4)480,633
C33(C202D4) = C60⋊D4φ: C202D4/C2×C4×D5C2 ⊆ Aut C3240C3:3(C20:2D4)480,525
C34(C202D4) = (C6×D5)⋊D4φ: C202D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:4(C20:2D4)480,625
C35(C202D4) = C602D4φ: C202D4/D4×C10C2 ⊆ Aut C3240C3:5(C20:2D4)480,903


׿
×
𝔽