Copied to
clipboard

G = D307D4order 480 = 25·3·5

7th semidirect product of D30 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D307D4, C6.85(D4×D5), C56(Dic3⋊D4), C32(C202D4), (C5×Dic3)⋊4D4, C10.87(S3×D4), C23.D58S3, C1519(C4⋊D4), D6⋊Dic532C2, C30.237(C2×D4), C23.21(S3×D5), Dic33(C5⋊D4), C6.Dic1035C2, (C2×Dic5).62D6, (C22×C10).51D6, (C22×C6).36D10, C30.151(C4○D4), C10.84(C4○D12), C6.57(D42D5), (C2×C30).199C23, (C22×S3).28D10, C2.39(D10⋊D6), (C2×Dic3).123D10, (C22×C30).61C22, C2.27(Dic3.D10), (C6×Dic5).115C22, (C22×D15).65C22, (C10×Dic3).115C22, (C2×Dic15).138C22, (C2×C3⋊D4)⋊2D5, (C10×C3⋊D4)⋊2C2, C6.64(C2×C5⋊D4), C2.39(S3×C5⋊D4), (C2×C157D4)⋊14C2, (C2×C5⋊D12)⋊11C2, C22.231(C2×S3×D5), (C2×D30.C2)⋊16C2, (S3×C2×C10).50C22, (C3×C23.D5)⋊10C2, (C2×C6).211(C22×D5), (C2×C10).211(C22×S3), SmallGroup(480,633)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D307D4
C1C5C15C30C2×C30C6×Dic5C2×D30.C2 — D307D4
C15C2×C30 — D307D4
C1C22C23

Generators and relations for D307D4
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=a-1, cac-1=dad=a11, cbc-1=a10b, dbd=a25b, dcd=c-1 >

Subgroups: 1068 in 188 conjugacy classes, 50 normal (44 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, Dic3, Dic3, C12, D6, C2×C6, C2×C6, C15, C22⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C5×S3, D15, C30, C30, C4⋊D4, C4×D5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, Dic3⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C2×C3⋊D4, C5×Dic3, C3×Dic5, Dic15, S3×C10, D30, D30, C2×C30, C2×C30, C4⋊Dic5, C23.D5, C23.D5, C2×C4×D5, C2×C5⋊D4, D4×C10, Dic3⋊D4, D30.C2, C5⋊D12, C6×Dic5, C10×Dic3, C5×C3⋊D4, C2×Dic15, C157D4, S3×C2×C10, C22×D15, C22×C30, C202D4, D6⋊Dic5, C6.Dic10, C3×C23.D5, C2×D30.C2, C2×C5⋊D12, C10×C3⋊D4, C2×C157D4, D307D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, C4○D4, D10, C22×S3, C4⋊D4, C5⋊D4, C22×D5, C4○D12, S3×D4, S3×D5, D4×D5, D42D5, C2×C5⋊D4, Dic3⋊D4, C2×S3×D5, C202D4, Dic3.D10, S3×C5⋊D4, D10⋊D6, D307D4

Smallest permutation representation of D307D4
On 240 points
Generators in S240
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210)(211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 239)(2 238)(3 237)(4 236)(5 235)(6 234)(7 233)(8 232)(9 231)(10 230)(11 229)(12 228)(13 227)(14 226)(15 225)(16 224)(17 223)(18 222)(19 221)(20 220)(21 219)(22 218)(23 217)(24 216)(25 215)(26 214)(27 213)(28 212)(29 211)(30 240)(31 189)(32 188)(33 187)(34 186)(35 185)(36 184)(37 183)(38 182)(39 181)(40 210)(41 209)(42 208)(43 207)(44 206)(45 205)(46 204)(47 203)(48 202)(49 201)(50 200)(51 199)(52 198)(53 197)(54 196)(55 195)(56 194)(57 193)(58 192)(59 191)(60 190)(61 176)(62 175)(63 174)(64 173)(65 172)(66 171)(67 170)(68 169)(69 168)(70 167)(71 166)(72 165)(73 164)(74 163)(75 162)(76 161)(77 160)(78 159)(79 158)(80 157)(81 156)(82 155)(83 154)(84 153)(85 152)(86 151)(87 180)(88 179)(89 178)(90 177)(91 142)(92 141)(93 140)(94 139)(95 138)(96 137)(97 136)(98 135)(99 134)(100 133)(101 132)(102 131)(103 130)(104 129)(105 128)(106 127)(107 126)(108 125)(109 124)(110 123)(111 122)(112 121)(113 150)(114 149)(115 148)(116 147)(117 146)(118 145)(119 144)(120 143)
(1 131 240 103)(2 142 211 114)(3 123 212 95)(4 134 213 106)(5 145 214 117)(6 126 215 98)(7 137 216 109)(8 148 217 120)(9 129 218 101)(10 140 219 112)(11 121 220 93)(12 132 221 104)(13 143 222 115)(14 124 223 96)(15 135 224 107)(16 146 225 118)(17 127 226 99)(18 138 227 110)(19 149 228 91)(20 130 229 102)(21 141 230 113)(22 122 231 94)(23 133 232 105)(24 144 233 116)(25 125 234 97)(26 136 235 108)(27 147 236 119)(28 128 237 100)(29 139 238 111)(30 150 239 92)(31 156 185 87)(32 167 186 68)(33 178 187 79)(34 159 188 90)(35 170 189 71)(36 151 190 82)(37 162 191 63)(38 173 192 74)(39 154 193 85)(40 165 194 66)(41 176 195 77)(42 157 196 88)(43 168 197 69)(44 179 198 80)(45 160 199 61)(46 171 200 72)(47 152 201 83)(48 163 202 64)(49 174 203 75)(50 155 204 86)(51 166 205 67)(52 177 206 78)(53 158 207 89)(54 169 208 70)(55 180 209 81)(56 161 210 62)(57 172 181 73)(58 153 182 84)(59 164 183 65)(60 175 184 76)
(1 210)(2 191)(3 202)(4 183)(5 194)(6 205)(7 186)(8 197)(9 208)(10 189)(11 200)(12 181)(13 192)(14 203)(15 184)(16 195)(17 206)(18 187)(19 198)(20 209)(21 190)(22 201)(23 182)(24 193)(25 204)(26 185)(27 196)(28 207)(29 188)(30 199)(31 235)(32 216)(33 227)(34 238)(35 219)(36 230)(37 211)(38 222)(39 233)(40 214)(41 225)(42 236)(43 217)(44 228)(45 239)(46 220)(47 231)(48 212)(49 223)(50 234)(51 215)(52 226)(53 237)(54 218)(55 229)(56 240)(57 221)(58 232)(59 213)(60 224)(61 92)(62 103)(63 114)(64 95)(65 106)(66 117)(67 98)(68 109)(69 120)(70 101)(71 112)(72 93)(73 104)(74 115)(75 96)(76 107)(77 118)(78 99)(79 110)(80 91)(81 102)(82 113)(83 94)(84 105)(85 116)(86 97)(87 108)(88 119)(89 100)(90 111)(121 171)(122 152)(123 163)(124 174)(125 155)(126 166)(127 177)(128 158)(129 169)(130 180)(131 161)(132 172)(133 153)(134 164)(135 175)(136 156)(137 167)(138 178)(139 159)(140 170)(141 151)(142 162)(143 173)(144 154)(145 165)(146 176)(147 157)(148 168)(149 179)(150 160)

G:=sub<Sym(240)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,239)(2,238)(3,237)(4,236)(5,235)(6,234)(7,233)(8,232)(9,231)(10,230)(11,229)(12,228)(13,227)(14,226)(15,225)(16,224)(17,223)(18,222)(19,221)(20,220)(21,219)(22,218)(23,217)(24,216)(25,215)(26,214)(27,213)(28,212)(29,211)(30,240)(31,189)(32,188)(33,187)(34,186)(35,185)(36,184)(37,183)(38,182)(39,181)(40,210)(41,209)(42,208)(43,207)(44,206)(45,205)(46,204)(47,203)(48,202)(49,201)(50,200)(51,199)(52,198)(53,197)(54,196)(55,195)(56,194)(57,193)(58,192)(59,191)(60,190)(61,176)(62,175)(63,174)(64,173)(65,172)(66,171)(67,170)(68,169)(69,168)(70,167)(71,166)(72,165)(73,164)(74,163)(75,162)(76,161)(77,160)(78,159)(79,158)(80,157)(81,156)(82,155)(83,154)(84,153)(85,152)(86,151)(87,180)(88,179)(89,178)(90,177)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,135)(99,134)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,126)(108,125)(109,124)(110,123)(111,122)(112,121)(113,150)(114,149)(115,148)(116,147)(117,146)(118,145)(119,144)(120,143), (1,131,240,103)(2,142,211,114)(3,123,212,95)(4,134,213,106)(5,145,214,117)(6,126,215,98)(7,137,216,109)(8,148,217,120)(9,129,218,101)(10,140,219,112)(11,121,220,93)(12,132,221,104)(13,143,222,115)(14,124,223,96)(15,135,224,107)(16,146,225,118)(17,127,226,99)(18,138,227,110)(19,149,228,91)(20,130,229,102)(21,141,230,113)(22,122,231,94)(23,133,232,105)(24,144,233,116)(25,125,234,97)(26,136,235,108)(27,147,236,119)(28,128,237,100)(29,139,238,111)(30,150,239,92)(31,156,185,87)(32,167,186,68)(33,178,187,79)(34,159,188,90)(35,170,189,71)(36,151,190,82)(37,162,191,63)(38,173,192,74)(39,154,193,85)(40,165,194,66)(41,176,195,77)(42,157,196,88)(43,168,197,69)(44,179,198,80)(45,160,199,61)(46,171,200,72)(47,152,201,83)(48,163,202,64)(49,174,203,75)(50,155,204,86)(51,166,205,67)(52,177,206,78)(53,158,207,89)(54,169,208,70)(55,180,209,81)(56,161,210,62)(57,172,181,73)(58,153,182,84)(59,164,183,65)(60,175,184,76), (1,210)(2,191)(3,202)(4,183)(5,194)(6,205)(7,186)(8,197)(9,208)(10,189)(11,200)(12,181)(13,192)(14,203)(15,184)(16,195)(17,206)(18,187)(19,198)(20,209)(21,190)(22,201)(23,182)(24,193)(25,204)(26,185)(27,196)(28,207)(29,188)(30,199)(31,235)(32,216)(33,227)(34,238)(35,219)(36,230)(37,211)(38,222)(39,233)(40,214)(41,225)(42,236)(43,217)(44,228)(45,239)(46,220)(47,231)(48,212)(49,223)(50,234)(51,215)(52,226)(53,237)(54,218)(55,229)(56,240)(57,221)(58,232)(59,213)(60,224)(61,92)(62,103)(63,114)(64,95)(65,106)(66,117)(67,98)(68,109)(69,120)(70,101)(71,112)(72,93)(73,104)(74,115)(75,96)(76,107)(77,118)(78,99)(79,110)(80,91)(81,102)(82,113)(83,94)(84,105)(85,116)(86,97)(87,108)(88,119)(89,100)(90,111)(121,171)(122,152)(123,163)(124,174)(125,155)(126,166)(127,177)(128,158)(129,169)(130,180)(131,161)(132,172)(133,153)(134,164)(135,175)(136,156)(137,167)(138,178)(139,159)(140,170)(141,151)(142,162)(143,173)(144,154)(145,165)(146,176)(147,157)(148,168)(149,179)(150,160)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210)(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,239)(2,238)(3,237)(4,236)(5,235)(6,234)(7,233)(8,232)(9,231)(10,230)(11,229)(12,228)(13,227)(14,226)(15,225)(16,224)(17,223)(18,222)(19,221)(20,220)(21,219)(22,218)(23,217)(24,216)(25,215)(26,214)(27,213)(28,212)(29,211)(30,240)(31,189)(32,188)(33,187)(34,186)(35,185)(36,184)(37,183)(38,182)(39,181)(40,210)(41,209)(42,208)(43,207)(44,206)(45,205)(46,204)(47,203)(48,202)(49,201)(50,200)(51,199)(52,198)(53,197)(54,196)(55,195)(56,194)(57,193)(58,192)(59,191)(60,190)(61,176)(62,175)(63,174)(64,173)(65,172)(66,171)(67,170)(68,169)(69,168)(70,167)(71,166)(72,165)(73,164)(74,163)(75,162)(76,161)(77,160)(78,159)(79,158)(80,157)(81,156)(82,155)(83,154)(84,153)(85,152)(86,151)(87,180)(88,179)(89,178)(90,177)(91,142)(92,141)(93,140)(94,139)(95,138)(96,137)(97,136)(98,135)(99,134)(100,133)(101,132)(102,131)(103,130)(104,129)(105,128)(106,127)(107,126)(108,125)(109,124)(110,123)(111,122)(112,121)(113,150)(114,149)(115,148)(116,147)(117,146)(118,145)(119,144)(120,143), (1,131,240,103)(2,142,211,114)(3,123,212,95)(4,134,213,106)(5,145,214,117)(6,126,215,98)(7,137,216,109)(8,148,217,120)(9,129,218,101)(10,140,219,112)(11,121,220,93)(12,132,221,104)(13,143,222,115)(14,124,223,96)(15,135,224,107)(16,146,225,118)(17,127,226,99)(18,138,227,110)(19,149,228,91)(20,130,229,102)(21,141,230,113)(22,122,231,94)(23,133,232,105)(24,144,233,116)(25,125,234,97)(26,136,235,108)(27,147,236,119)(28,128,237,100)(29,139,238,111)(30,150,239,92)(31,156,185,87)(32,167,186,68)(33,178,187,79)(34,159,188,90)(35,170,189,71)(36,151,190,82)(37,162,191,63)(38,173,192,74)(39,154,193,85)(40,165,194,66)(41,176,195,77)(42,157,196,88)(43,168,197,69)(44,179,198,80)(45,160,199,61)(46,171,200,72)(47,152,201,83)(48,163,202,64)(49,174,203,75)(50,155,204,86)(51,166,205,67)(52,177,206,78)(53,158,207,89)(54,169,208,70)(55,180,209,81)(56,161,210,62)(57,172,181,73)(58,153,182,84)(59,164,183,65)(60,175,184,76), (1,210)(2,191)(3,202)(4,183)(5,194)(6,205)(7,186)(8,197)(9,208)(10,189)(11,200)(12,181)(13,192)(14,203)(15,184)(16,195)(17,206)(18,187)(19,198)(20,209)(21,190)(22,201)(23,182)(24,193)(25,204)(26,185)(27,196)(28,207)(29,188)(30,199)(31,235)(32,216)(33,227)(34,238)(35,219)(36,230)(37,211)(38,222)(39,233)(40,214)(41,225)(42,236)(43,217)(44,228)(45,239)(46,220)(47,231)(48,212)(49,223)(50,234)(51,215)(52,226)(53,237)(54,218)(55,229)(56,240)(57,221)(58,232)(59,213)(60,224)(61,92)(62,103)(63,114)(64,95)(65,106)(66,117)(67,98)(68,109)(69,120)(70,101)(71,112)(72,93)(73,104)(74,115)(75,96)(76,107)(77,118)(78,99)(79,110)(80,91)(81,102)(82,113)(83,94)(84,105)(85,116)(86,97)(87,108)(88,119)(89,100)(90,111)(121,171)(122,152)(123,163)(124,174)(125,155)(126,166)(127,177)(128,158)(129,169)(130,180)(131,161)(132,172)(133,153)(134,164)(135,175)(136,156)(137,167)(138,178)(139,159)(140,170)(141,151)(142,162)(143,173)(144,154)(145,165)(146,176)(147,157)(148,168)(149,179)(150,160) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210),(211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,239),(2,238),(3,237),(4,236),(5,235),(6,234),(7,233),(8,232),(9,231),(10,230),(11,229),(12,228),(13,227),(14,226),(15,225),(16,224),(17,223),(18,222),(19,221),(20,220),(21,219),(22,218),(23,217),(24,216),(25,215),(26,214),(27,213),(28,212),(29,211),(30,240),(31,189),(32,188),(33,187),(34,186),(35,185),(36,184),(37,183),(38,182),(39,181),(40,210),(41,209),(42,208),(43,207),(44,206),(45,205),(46,204),(47,203),(48,202),(49,201),(50,200),(51,199),(52,198),(53,197),(54,196),(55,195),(56,194),(57,193),(58,192),(59,191),(60,190),(61,176),(62,175),(63,174),(64,173),(65,172),(66,171),(67,170),(68,169),(69,168),(70,167),(71,166),(72,165),(73,164),(74,163),(75,162),(76,161),(77,160),(78,159),(79,158),(80,157),(81,156),(82,155),(83,154),(84,153),(85,152),(86,151),(87,180),(88,179),(89,178),(90,177),(91,142),(92,141),(93,140),(94,139),(95,138),(96,137),(97,136),(98,135),(99,134),(100,133),(101,132),(102,131),(103,130),(104,129),(105,128),(106,127),(107,126),(108,125),(109,124),(110,123),(111,122),(112,121),(113,150),(114,149),(115,148),(116,147),(117,146),(118,145),(119,144),(120,143)], [(1,131,240,103),(2,142,211,114),(3,123,212,95),(4,134,213,106),(5,145,214,117),(6,126,215,98),(7,137,216,109),(8,148,217,120),(9,129,218,101),(10,140,219,112),(11,121,220,93),(12,132,221,104),(13,143,222,115),(14,124,223,96),(15,135,224,107),(16,146,225,118),(17,127,226,99),(18,138,227,110),(19,149,228,91),(20,130,229,102),(21,141,230,113),(22,122,231,94),(23,133,232,105),(24,144,233,116),(25,125,234,97),(26,136,235,108),(27,147,236,119),(28,128,237,100),(29,139,238,111),(30,150,239,92),(31,156,185,87),(32,167,186,68),(33,178,187,79),(34,159,188,90),(35,170,189,71),(36,151,190,82),(37,162,191,63),(38,173,192,74),(39,154,193,85),(40,165,194,66),(41,176,195,77),(42,157,196,88),(43,168,197,69),(44,179,198,80),(45,160,199,61),(46,171,200,72),(47,152,201,83),(48,163,202,64),(49,174,203,75),(50,155,204,86),(51,166,205,67),(52,177,206,78),(53,158,207,89),(54,169,208,70),(55,180,209,81),(56,161,210,62),(57,172,181,73),(58,153,182,84),(59,164,183,65),(60,175,184,76)], [(1,210),(2,191),(3,202),(4,183),(5,194),(6,205),(7,186),(8,197),(9,208),(10,189),(11,200),(12,181),(13,192),(14,203),(15,184),(16,195),(17,206),(18,187),(19,198),(20,209),(21,190),(22,201),(23,182),(24,193),(25,204),(26,185),(27,196),(28,207),(29,188),(30,199),(31,235),(32,216),(33,227),(34,238),(35,219),(36,230),(37,211),(38,222),(39,233),(40,214),(41,225),(42,236),(43,217),(44,228),(45,239),(46,220),(47,231),(48,212),(49,223),(50,234),(51,215),(52,226),(53,237),(54,218),(55,229),(56,240),(57,221),(58,232),(59,213),(60,224),(61,92),(62,103),(63,114),(64,95),(65,106),(66,117),(67,98),(68,109),(69,120),(70,101),(71,112),(72,93),(73,104),(74,115),(75,96),(76,107),(77,118),(78,99),(79,110),(80,91),(81,102),(82,113),(83,94),(84,105),(85,116),(86,97),(87,108),(88,119),(89,100),(90,111),(121,171),(122,152),(123,163),(124,174),(125,155),(126,166),(127,177),(128,158),(129,169),(130,180),(131,161),(132,172),(133,153),(134,164),(135,175),(136,156),(137,167),(138,178),(139,159),(140,170),(141,151),(142,162),(143,173),(144,154),(145,165),(146,176),(147,157),(148,168),(149,179),(150,160)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F5A5B6A6B6C6D6E10A···10F10G10H10I10J10K10L10M10N12A12B12C12D15A15B20A20B20C20D30A···30N
order122222223444444556666610···1010101010101010101212121215152020202030···30
size111141230302661010206022222442···24444121212122020202044121212124···4

60 irreducible representations

dim1111111122222222222244444444
type++++++++++++++++++++-++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6C4○D4D10D10D10C5⋊D4C4○D12S3×D4S3×D5D4×D5D42D5C2×S3×D5Dic3.D10S3×C5⋊D4D10⋊D6
kernelD307D4D6⋊Dic5C6.Dic10C3×C23.D5C2×D30.C2C2×C5⋊D12C10×C3⋊D4C2×C157D4C23.D5C5×Dic3D30C2×C3⋊D4C2×Dic5C22×C10C30C2×Dic3C22×S3C22×C6Dic3C10C10C23C6C6C22C2C2C2
# reps1111111112222122228422222444

Matrix representation of D307D4 in GL6(𝔽61)

6000000
0600000
00186000
00196000
0000160
000010
,
6000000
4110000
0001700
0018000
0000600
0000601
,
100000
010000
0060000
0006000
0000050
0000500
,
160000
0600000
001000
000100
00001523
00003846

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,18,19,0,0,0,0,60,60,0,0,0,0,0,0,1,1,0,0,0,0,60,0],[60,41,0,0,0,0,0,1,0,0,0,0,0,0,0,18,0,0,0,0,17,0,0,0,0,0,0,0,60,60,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,50,0,0,0,0,50,0],[1,0,0,0,0,0,6,60,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,15,38,0,0,0,0,23,46] >;

D307D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_7D_4
% in TeX

G:=Group("D30:7D4");
// GroupNames label

G:=SmallGroup(480,633);
// by ID

G=gap.SmallGroup(480,633);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,112,120,254,219,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^11,c*b*c^-1=a^10*b,d*b*d=a^25*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽