Extensions 1→N→G→Q→1 with N=C3 and Q=Dic5⋊D4

Direct product G=N×Q with N=C3 and Q=Dic5⋊D4
dρLabelID
C3×Dic5⋊D4240C3xDic5:D4480,732

Semidirect products G=N:Q with N=C3 and Q=Dic5⋊D4
extensionφ:Q→Aut NdρLabelID
C31(Dic5⋊D4) = Dic5⋊D12φ: Dic5⋊D4/C10.D4C2 ⊆ Aut C3240C3:1(Dic5:D4)480,492
C32(Dic5⋊D4) = Dic152D4φ: Dic5⋊D4/D10⋊C4C2 ⊆ Aut C3240C3:2(Dic5:D4)480,529
C33(Dic5⋊D4) = Dic154D4φ: Dic5⋊D4/C23.D5C2 ⊆ Aut C3240C3:3(Dic5:D4)480,634
C34(Dic5⋊D4) = (C2×C10)⋊4D12φ: Dic5⋊D4/C22×Dic5C2 ⊆ Aut C3240C3:4(Dic5:D4)480,642
C35(Dic5⋊D4) = (S3×C10)⋊D4φ: Dic5⋊D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:5(Dic5:D4)480,641
C36(Dic5⋊D4) = Dic1518D4φ: Dic5⋊D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:6(Dic5:D4)480,647
C37(Dic5⋊D4) = Dic1512D4φ: Dic5⋊D4/D4×C10C2 ⊆ Aut C3240C3:7(Dic5:D4)480,904


׿
×
𝔽