Extensions 1→N→G→Q→1 with N=C4×D5 and Q=C12

Direct product G=N×Q with N=C4×D5 and Q=C12
dρLabelID
D5×C4×C12240D5xC4xC12480,664

Semidirect products G=N:Q with N=C4×D5 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1C12 = C3×D5×C4⋊C4φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5):1C12480,684
(C4×D5)⋊2C12 = C3×C4⋊C47D5φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5):2C12480,685
(C4×D5)⋊3C12 = C3×C42⋊D5φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5):3C12480,665
(C4×D5)⋊4C12 = C6×C4⋊F5φ: C12/C6C2 ⊆ Out C4×D5120(C4xD5):4C12480,1051
(C4×D5)⋊5C12 = F5×C2×C12φ: C12/C6C2 ⊆ Out C4×D5120(C4xD5):5C12480,1050
(C4×D5)⋊6C12 = C3×D10.C23φ: C12/C6C2 ⊆ Out C4×D51204(C4xD5):6C12480,1052

Non-split extensions G=N.Q with N=C4×D5 and Q=C12
extensionφ:Q→Out NdρLabelID
(C4×D5).1C12 = C3×D5×M4(2)φ: C12/C6C2 ⊆ Out C4×D51204(C4xD5).1C12480,699
(C4×D5).2C12 = C3×C80⋊C2φ: C12/C6C2 ⊆ Out C4×D52402(C4xD5).2C12480,76
(C4×D5).3C12 = C6×C8⋊D5φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5).3C12480,693
(C4×D5).4C12 = C6×C4.F5φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5).4C12480,1048
(C4×D5).5C12 = C3×D5⋊C16φ: C12/C6C2 ⊆ Out C4×D52404(C4xD5).5C12480,269
(C4×D5).6C12 = C3×C8.F5φ: C12/C6C2 ⊆ Out C4×D52404(C4xD5).6C12480,270
(C4×D5).7C12 = C6×D5⋊C8φ: C12/C6C2 ⊆ Out C4×D5240(C4xD5).7C12480,1047
(C4×D5).8C12 = C3×D5⋊M4(2)φ: C12/C6C2 ⊆ Out C4×D51204(C4xD5).8C12480,1049
(C4×D5).9C12 = D5×C48φ: trivial image2402(C4xD5).9C12480,75
(C4×D5).10C12 = D5×C2×C24φ: trivial image240(C4xD5).10C12480,692

׿
×
𝔽