Copied to
clipboard

G = C6×C4⋊F5order 480 = 25·3·5

Direct product of C6 and C4⋊F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C6×C4⋊F5, C42(C6×F5), (C2×C60)⋊8C4, C609(C2×C4), (C2×C12)⋊8F5, C129(C2×F5), C303(C4⋊C4), C202(C2×C12), (C2×C20)⋊3C12, (C4×D5)⋊4C12, D5.1(C6×D4), D5.1(C6×Q8), (D5×C12)⋊11C4, (C6×D5).56D4, (C6×D5).14Q8, D10.4(C3×Q8), (C6×Dic5)⋊18C4, Dic57(C2×C12), (C2×Dic5)⋊8C12, D10.10(C3×D4), (C22×F5).2C6, C22.18(C6×F5), C6.49(C22×F5), D10.15(C2×C12), C30.87(C22×C4), C10.5(C22×C12), (C6×D5).68C23, D10.9(C22×C6), (C6×F5).14C22, (D5×C12).133C22, C5⋊(C6×C4⋊C4), C10⋊(C3×C4⋊C4), D5⋊(C3×C4⋊C4), C154(C2×C4⋊C4), C2.6(C2×C6×F5), (C2×C4)⋊3(C3×F5), (C2×C6×F5).5C2, (C2×C4×D5).14C6, (C3×D5)⋊5(C4⋊C4), (D5×C2×C12).35C2, (C2×F5).1(C2×C6), (C2×C6).61(C2×F5), (C3×D5).6(C2×Q8), (C2×C30).60(C2×C4), (C4×D5).31(C2×C6), (C6×D5).64(C2×C4), (C3×D5).10(C2×D4), (C2×C10).17(C2×C12), (C3×Dic5)⋊28(C2×C4), (D5×C2×C6).150C22, (C22×D5).39(C2×C6), SmallGroup(480,1051)

Series: Derived Chief Lower central Upper central

C1C10 — C6×C4⋊F5
C1C5C10D10C6×D5C6×F5C2×C6×F5 — C6×C4⋊F5
C5C10 — C6×C4⋊F5
C1C2×C6C2×C12

Generators and relations for C6×C4⋊F5
 G = < a,b,c,d | a6=b4=c5=d4=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b-1, dcd-1=c3 >

Subgroups: 584 in 184 conjugacy classes, 92 normal (32 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C6, C2×C4, C2×C4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C4⋊C4, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C2×C12, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×C4⋊C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C2×F5, C22×D5, C3×C4⋊C4, C22×C12, C3×Dic5, C60, C3×F5, C6×D5, C6×D5, C2×C30, C4⋊F5, C2×C4×D5, C22×F5, C6×C4⋊C4, D5×C12, C6×Dic5, C2×C60, C6×F5, C6×F5, D5×C2×C6, C2×C4⋊F5, C3×C4⋊F5, D5×C2×C12, C2×C6×F5, C6×C4⋊F5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C23, C12, C2×C6, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, C2×C12, C3×D4, C3×Q8, C22×C6, C2×C4⋊C4, C2×F5, C3×C4⋊C4, C22×C12, C6×D4, C6×Q8, C3×F5, C4⋊F5, C22×F5, C6×C4⋊C4, C6×F5, C2×C4⋊F5, C3×C4⋊F5, C2×C6×F5, C6×C4⋊F5

Smallest permutation representation of C6×C4⋊F5
On 120 points
Generators in S120
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 61 97 104)(2 62 98 105)(3 63 99 106)(4 64 100 107)(5 65 101 108)(6 66 102 103)(7 109 44 17)(8 110 45 18)(9 111 46 13)(10 112 47 14)(11 113 48 15)(12 114 43 16)(19 51 32 25)(20 52 33 26)(21 53 34 27)(22 54 35 28)(23 49 36 29)(24 50 31 30)(37 58 85 81)(38 59 86 82)(39 60 87 83)(40 55 88 84)(41 56 89 79)(42 57 90 80)(67 119 76 93)(68 120 77 94)(69 115 78 95)(70 116 73 96)(71 117 74 91)(72 118 75 92)
(1 95 41 29 109)(2 96 42 30 110)(3 91 37 25 111)(4 92 38 26 112)(5 93 39 27 113)(6 94 40 28 114)(7 104 78 79 36)(8 105 73 80 31)(9 106 74 81 32)(10 107 75 82 33)(11 108 76 83 34)(12 103 77 84 35)(13 99 117 85 51)(14 100 118 86 52)(15 101 119 87 53)(16 102 120 88 54)(17 97 115 89 49)(18 98 116 90 50)(19 46 63 71 58)(20 47 64 72 59)(21 48 65 67 60)(22 43 66 68 55)(23 44 61 69 56)(24 45 62 70 57)
(1 64)(2 65)(3 66)(4 61)(5 62)(6 63)(7 52 78 86)(8 53 73 87)(9 54 74 88)(10 49 75 89)(11 50 76 90)(12 51 77 85)(13 35 117 84)(14 36 118 79)(15 31 119 80)(16 32 120 81)(17 33 115 82)(18 34 116 83)(19 94 58 114)(20 95 59 109)(21 96 60 110)(22 91 55 111)(23 92 56 112)(24 93 57 113)(25 68 37 43)(26 69 38 44)(27 70 39 45)(28 71 40 46)(29 72 41 47)(30 67 42 48)(97 107)(98 108)(99 103)(100 104)(101 105)(102 106)

G:=sub<Sym(120)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,61,97,104)(2,62,98,105)(3,63,99,106)(4,64,100,107)(5,65,101,108)(6,66,102,103)(7,109,44,17)(8,110,45,18)(9,111,46,13)(10,112,47,14)(11,113,48,15)(12,114,43,16)(19,51,32,25)(20,52,33,26)(21,53,34,27)(22,54,35,28)(23,49,36,29)(24,50,31,30)(37,58,85,81)(38,59,86,82)(39,60,87,83)(40,55,88,84)(41,56,89,79)(42,57,90,80)(67,119,76,93)(68,120,77,94)(69,115,78,95)(70,116,73,96)(71,117,74,91)(72,118,75,92), (1,95,41,29,109)(2,96,42,30,110)(3,91,37,25,111)(4,92,38,26,112)(5,93,39,27,113)(6,94,40,28,114)(7,104,78,79,36)(8,105,73,80,31)(9,106,74,81,32)(10,107,75,82,33)(11,108,76,83,34)(12,103,77,84,35)(13,99,117,85,51)(14,100,118,86,52)(15,101,119,87,53)(16,102,120,88,54)(17,97,115,89,49)(18,98,116,90,50)(19,46,63,71,58)(20,47,64,72,59)(21,48,65,67,60)(22,43,66,68,55)(23,44,61,69,56)(24,45,62,70,57), (1,64)(2,65)(3,66)(4,61)(5,62)(6,63)(7,52,78,86)(8,53,73,87)(9,54,74,88)(10,49,75,89)(11,50,76,90)(12,51,77,85)(13,35,117,84)(14,36,118,79)(15,31,119,80)(16,32,120,81)(17,33,115,82)(18,34,116,83)(19,94,58,114)(20,95,59,109)(21,96,60,110)(22,91,55,111)(23,92,56,112)(24,93,57,113)(25,68,37,43)(26,69,38,44)(27,70,39,45)(28,71,40,46)(29,72,41,47)(30,67,42,48)(97,107)(98,108)(99,103)(100,104)(101,105)(102,106)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,61,97,104)(2,62,98,105)(3,63,99,106)(4,64,100,107)(5,65,101,108)(6,66,102,103)(7,109,44,17)(8,110,45,18)(9,111,46,13)(10,112,47,14)(11,113,48,15)(12,114,43,16)(19,51,32,25)(20,52,33,26)(21,53,34,27)(22,54,35,28)(23,49,36,29)(24,50,31,30)(37,58,85,81)(38,59,86,82)(39,60,87,83)(40,55,88,84)(41,56,89,79)(42,57,90,80)(67,119,76,93)(68,120,77,94)(69,115,78,95)(70,116,73,96)(71,117,74,91)(72,118,75,92), (1,95,41,29,109)(2,96,42,30,110)(3,91,37,25,111)(4,92,38,26,112)(5,93,39,27,113)(6,94,40,28,114)(7,104,78,79,36)(8,105,73,80,31)(9,106,74,81,32)(10,107,75,82,33)(11,108,76,83,34)(12,103,77,84,35)(13,99,117,85,51)(14,100,118,86,52)(15,101,119,87,53)(16,102,120,88,54)(17,97,115,89,49)(18,98,116,90,50)(19,46,63,71,58)(20,47,64,72,59)(21,48,65,67,60)(22,43,66,68,55)(23,44,61,69,56)(24,45,62,70,57), (1,64)(2,65)(3,66)(4,61)(5,62)(6,63)(7,52,78,86)(8,53,73,87)(9,54,74,88)(10,49,75,89)(11,50,76,90)(12,51,77,85)(13,35,117,84)(14,36,118,79)(15,31,119,80)(16,32,120,81)(17,33,115,82)(18,34,116,83)(19,94,58,114)(20,95,59,109)(21,96,60,110)(22,91,55,111)(23,92,56,112)(24,93,57,113)(25,68,37,43)(26,69,38,44)(27,70,39,45)(28,71,40,46)(29,72,41,47)(30,67,42,48)(97,107)(98,108)(99,103)(100,104)(101,105)(102,106) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,61,97,104),(2,62,98,105),(3,63,99,106),(4,64,100,107),(5,65,101,108),(6,66,102,103),(7,109,44,17),(8,110,45,18),(9,111,46,13),(10,112,47,14),(11,113,48,15),(12,114,43,16),(19,51,32,25),(20,52,33,26),(21,53,34,27),(22,54,35,28),(23,49,36,29),(24,50,31,30),(37,58,85,81),(38,59,86,82),(39,60,87,83),(40,55,88,84),(41,56,89,79),(42,57,90,80),(67,119,76,93),(68,120,77,94),(69,115,78,95),(70,116,73,96),(71,117,74,91),(72,118,75,92)], [(1,95,41,29,109),(2,96,42,30,110),(3,91,37,25,111),(4,92,38,26,112),(5,93,39,27,113),(6,94,40,28,114),(7,104,78,79,36),(8,105,73,80,31),(9,106,74,81,32),(10,107,75,82,33),(11,108,76,83,34),(12,103,77,84,35),(13,99,117,85,51),(14,100,118,86,52),(15,101,119,87,53),(16,102,120,88,54),(17,97,115,89,49),(18,98,116,90,50),(19,46,63,71,58),(20,47,64,72,59),(21,48,65,67,60),(22,43,66,68,55),(23,44,61,69,56),(24,45,62,70,57)], [(1,64),(2,65),(3,66),(4,61),(5,62),(6,63),(7,52,78,86),(8,53,73,87),(9,54,74,88),(10,49,75,89),(11,50,76,90),(12,51,77,85),(13,35,117,84),(14,36,118,79),(15,31,119,80),(16,32,120,81),(17,33,115,82),(18,34,116,83),(19,94,58,114),(20,95,59,109),(21,96,60,110),(22,91,55,111),(23,92,56,112),(24,93,57,113),(25,68,37,43),(26,69,38,44),(27,70,39,45),(28,71,40,46),(29,72,41,47),(30,67,42,48),(97,107),(98,108),(99,103),(100,104),(101,105),(102,106)]])

84 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C···4L 5 6A···6F6G···6N10A10B10C12A12B12C12D12E···12X15A15B20A20B20C20D30A···30F60A···60H
order1222222233444···456···66···61010101212121212···1215152020202030···3060···60
size11115555112210···1041···15···5444222210···104444444···44···4

84 irreducible representations

dim11111111111111222244444444
type+++++-+++
imageC1C2C2C2C3C4C4C4C6C6C6C12C12C12D4Q8C3×D4C3×Q8F5C2×F5C2×F5C3×F5C4⋊F5C6×F5C6×F5C3×C4⋊F5
kernelC6×C4⋊F5C3×C4⋊F5D5×C2×C12C2×C6×F5C2×C4⋊F5D5×C12C6×Dic5C2×C60C4⋊F5C2×C4×D5C22×F5C4×D5C2×Dic5C2×C20C6×D5C6×D5D10D10C2×C12C12C2×C6C2×C4C6C4C22C2
# reps14122422824844224412124428

Matrix representation of C6×C4⋊F5 in GL8(𝔽61)

480000000
048000000
004700000
000470000
000047000
000004700
000000470
000000047
,
4256000000
4819000000
0042560000
0048190000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00000100
00000010
00000001
000060606060
,
2655000000
135000000
003560000
0060260000
00001000
00000001
00000100
000060606060

G:=sub<GL(8,GF(61))| [48,0,0,0,0,0,0,0,0,48,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,0,47],[42,48,0,0,0,0,0,0,56,19,0,0,0,0,0,0,0,0,42,48,0,0,0,0,0,0,56,19,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,1,60],[26,1,0,0,0,0,0,0,55,35,0,0,0,0,0,0,0,0,35,60,0,0,0,0,0,0,6,26,0,0,0,0,0,0,0,0,1,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,60,0,0,0,0,0,1,0,60] >;

C6×C4⋊F5 in GAP, Magma, Sage, TeX

C_6\times C_4\rtimes F_5
% in TeX

G:=Group("C6xC4:F5");
// GroupNames label

G:=SmallGroup(480,1051);
// by ID

G=gap.SmallGroup(480,1051);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,168,1094,268,9414,818]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽