Extensions 1→N→G→Q→1 with N=SL2(𝔽5) and Q=C22

Direct product G=N×Q with N=SL2(𝔽5) and Q=C22

Semidirect products G=N:Q with N=SL2(𝔽5) and Q=C22
extensionφ:Q→Out NdρLabelID
SL2(𝔽5)⋊1C22 = C4.3S5φ: C22/C2C2 ⊆ Out SL2(𝔽5)404SL(2,5):1C2^2480,948
SL2(𝔽5)⋊2C22 = C2×C2.S5φ: C22/C2C2 ⊆ Out SL2(𝔽5)80SL(2,5):2C2^2480,950
SL2(𝔽5)⋊3C22 = C2×C4.A5φ: trivial image48SL(2,5):3C2^2480,955
SL2(𝔽5)⋊4C22 = Q8.A5φ: trivial image484+SL(2,5):4C2^2480,959

Non-split extensions G=N.Q with N=SL2(𝔽5) and Q=C22
extensionφ:Q→Out NdρLabelID
SL2(𝔽5).1C22 = C4.6S5φ: C22/C2C2 ⊆ Out SL2(𝔽5)484SL(2,5).1C2^2480,946
SL2(𝔽5).2C22 = C4.S5φ: C22/C2C2 ⊆ Out SL2(𝔽5)484SL(2,5).2C2^2480,947
SL2(𝔽5).3C22 = C2×CSU2(𝔽5)φ: C22/C2C2 ⊆ Out SL2(𝔽5)96SL(2,5).3C2^2480,949
SL2(𝔽5).4C22 = C22.S5φ: C22/C2C2 ⊆ Out SL2(𝔽5)484-SL(2,5).4C2^2480,953
SL2(𝔽5).5C22 = D4.A5φ: trivial image484-SL(2,5).5C2^2480,957