Copied to
clipboard

G = C2xCSU2(F5)  order 480 = 25·3·5

Direct product of C2 and CSU2(F5)

direct product, non-abelian, not soluble

Aliases: C2xCSU2(F5), C22.3S5, SL2(F5).3C22, C2.8(C2xS5), (C2xSL2(F5)).2C2, SmallGroup(480,949)

Series: ChiefDerived Lower central Upper central

C1C2C22C2xSL2(F5) — C2xCSU2(F5)
SL2(F5) — C2xCSU2(F5)
SL2(F5) — C2xCSU2(F5)
C1C22

Subgroups: 586 in 66 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C8, C2xC4, Q8, C10, Dic3, C12, C2xC6, C2xC8, Q16, C2xQ8, Dic5, C2xC10, SL2(F3), Dic6, C2xDic3, C2xC12, C2xQ16, C5:C8, C2xDic5, CSU2(F3), C2xSL2(F3), C2xDic6, C2xC5:C8, C2xCSU2(F3), SL2(F5), CSU2(F5), C2xSL2(F5), C2xCSU2(F5)
Quotients: C1, C2, C22, S5, CSU2(F5), C2xS5, C2xCSU2(F5)

Character table of C2xCSU2(F5)

 class 12A2B2C34A4B4C4D56A6B6C8A8B8C8D10A10B10C12A12B12C12D
 size 11112020203030242020203030303024242420202020
ρ1111111111111111111111111    trivial
ρ211-1-111-11-111-1-1-1-1111-1-111-1-1    linear of order 2
ρ311111-1-1111111-1-1-1-1111-1-1-1-1    linear of order 2
ρ411-1-11-111-111-1-111-1-11-1-1-1-111    linear of order 2
ρ544-4-412-200-11-1-10000-111-1-111    orthogonal lifted from C2xS5
ρ6444412200-11110000-1-1-1-1-1-1-1    orthogonal lifted from S5
ρ744-4-41-2200-11-1-10000-11111-1-1    orthogonal lifted from C2xS5
ρ844441-2-200-11110000-1-1-11111    orthogonal lifted from S5
ρ94-4-44-20000-122-2000011-10000    symplectic lifted from CSU2(F5), Schur index 2
ρ104-44-4-20000-12-2200001-110000    symplectic lifted from CSU2(F5), Schur index 2
ρ114-44-410000-1-11-100001-11-33-33    symplectic lifted from CSU2(F5), Schur index 2
ρ124-44-410000-1-11-100001-113-33-3    symplectic lifted from CSU2(F5), Schur index 2
ρ134-4-4410000-1-1-11000011-1-333-3    symplectic lifted from CSU2(F5), Schur index 2
ρ144-4-4410000-1-1-11000011-13-3-33    symplectic lifted from CSU2(F5), Schur index 2
ρ155555-1-1-1110-1-1-11111000-1-1-1-1    orthogonal lifted from S5
ρ1655-5-5-1-111-10-111-1-111000-1-111    orthogonal lifted from C2xS5
ρ175555-111110-1-1-1-1-1-1-10001111    orthogonal lifted from S5
ρ1855-5-5-11-11-10-11111-1-100011-1-1    orthogonal lifted from C2xS5
ρ1966-6-6000-22100000001-1-10000    orthogonal lifted from C2xS5
ρ206666000-2-2100000001110000    orthogonal lifted from S5
ρ216-66-60000010002-2-22-11-10000    symplectic lifted from CSU2(F5), Schur index 2
ρ226-6-660000010002-22-2-1-110000    symplectic lifted from CSU2(F5), Schur index 2
ρ236-66-6000001000-222-2-11-10000    symplectic lifted from CSU2(F5), Schur index 2
ρ246-6-66000001000-22-22-1-110000    symplectic lifted from CSU2(F5), Schur index 2

Smallest permutation representation of C2xCSU2(F5)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 21 3 66 7 15 9 72)(2 16 57 20 8 22 51 14)(4 74 34 65 10 80 28 71)(5 83 48 73 11 77 42 79)(6 61 30 82 12 67 36 76)(13 58 85 46 19 52 91 40)(17 44 95 56 23 38 89 50)(18 41 84 43 24 47 78 37)(25 93 27 75 31 87 33 81)(26 88 45 92 32 94 39 86)(29 68 54 70 35 62 60 64)(49 96 53 63 55 90 59 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,21,3,66,7,15,9,72),(2,16,57,20,8,22,51,14),(4,74,34,65,10,80,28,71),(5,83,48,73,11,77,42,79),(6,61,30,82,12,67,36,76),(13,58,85,46,19,52,91,40),(17,44,95,56,23,38,89,50),(18,41,84,43,24,47,78,37),(25,93,27,75,31,87,33,81),(26,88,45,92,32,94,39,86),(29,68,54,70,35,62,60,64),(49,96,53,63,55,90,59,69)]])

Matrix representation of C2xCSU2(F5) in GL8(F241)

2400000000
2400010000
2401000000
2400100000
000015821516626
000080944137
0000113140228206
0000651581742
,
00010000
2400010000
0024010000
0240010000
00001832232849
00002211931060
000041742209
0000218196145127

G:=sub<GL(8,GF(241))| [240,240,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,158,80,113,65,0,0,0,0,215,94,140,158,0,0,0,0,166,41,228,174,0,0,0,0,26,37,206,2],[0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,183,221,41,218,0,0,0,0,223,193,74,196,0,0,0,0,28,10,220,145,0,0,0,0,49,60,9,127] >;

C2xCSU2(F5) in GAP, Magma, Sage, TeX

C_2\times {\rm CSU}_2({\mathbb F}_5)
% in TeX

G:=Group("C2xCSU(2,5)");
// GroupNames label

G:=SmallGroup(480,949);
// by ID

G=gap.SmallGroup(480,949);
# by ID

Export

Character table of C2xCSU2(F5) in TeX

׿
x
:
Z
F
o
wr
Q
<