Copied to
clipboard

G = C2×CSU2(𝔽5)  order 480 = 25·3·5

Direct product of C2 and CSU2(𝔽5)

direct product, non-abelian, not soluble

Aliases: C2×CSU2(𝔽5), C22.3S5, SL2(𝔽5).3C22, C2.8(C2×S5), (C2×SL2(𝔽5)).2C2, SmallGroup(480,949)

Series: ChiefDerived Lower central Upper central

C1C2C22C2×SL2(𝔽5) — C2×CSU2(𝔽5)
SL2(𝔽5) — C2×CSU2(𝔽5)
SL2(𝔽5) — C2×CSU2(𝔽5)
C1C22

Subgroups: 586 in 66 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C8, C2×C4, Q8, C10, Dic3, C12, C2×C6, C2×C8, Q16, C2×Q8, Dic5, C2×C10, SL2(𝔽3), Dic6, C2×Dic3, C2×C12, C2×Q16, C5⋊C8, C2×Dic5, CSU2(𝔽3), C2×SL2(𝔽3), C2×Dic6, C2×C5⋊C8, C2×CSU2(𝔽3), SL2(𝔽5), CSU2(𝔽5), C2×SL2(𝔽5), C2×CSU2(𝔽5)
Quotients: C1, C2, C22, S5, CSU2(𝔽5), C2×S5, C2×CSU2(𝔽5)

Character table of C2×CSU2(𝔽5)

 class 12A2B2C34A4B4C4D56A6B6C8A8B8C8D10A10B10C12A12B12C12D
 size 11112020203030242020203030303024242420202020
ρ1111111111111111111111111    trivial
ρ211-1-111-11-111-1-1-1-1111-1-111-1-1    linear of order 2
ρ311111-1-1111111-1-1-1-1111-1-1-1-1    linear of order 2
ρ411-1-11-111-111-1-111-1-11-1-1-1-111    linear of order 2
ρ544-4-412-200-11-1-10000-111-1-111    orthogonal lifted from C2×S5
ρ6444412200-11110000-1-1-1-1-1-1-1    orthogonal lifted from S5
ρ744-4-41-2200-11-1-10000-11111-1-1    orthogonal lifted from C2×S5
ρ844441-2-200-11110000-1-1-11111    orthogonal lifted from S5
ρ94-4-44-20000-122-2000011-10000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ104-44-4-20000-12-2200001-110000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ114-44-410000-1-11-100001-11-33-33    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ124-44-410000-1-11-100001-113-33-3    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ134-4-4410000-1-1-11000011-1-333-3    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ144-4-4410000-1-1-11000011-13-3-33    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ155555-1-1-1110-1-1-11111000-1-1-1-1    orthogonal lifted from S5
ρ1655-5-5-1-111-10-111-1-111000-1-111    orthogonal lifted from C2×S5
ρ175555-111110-1-1-1-1-1-1-10001111    orthogonal lifted from S5
ρ1855-5-5-11-11-10-11111-1-100011-1-1    orthogonal lifted from C2×S5
ρ1966-6-6000-22100000001-1-10000    orthogonal lifted from C2×S5
ρ206666000-2-2100000001110000    orthogonal lifted from S5
ρ216-66-60000010002-2-22-11-10000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ226-6-660000010002-22-2-1-110000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ236-66-6000001000-222-2-11-10000    symplectic lifted from CSU2(𝔽5), Schur index 2
ρ246-6-66000001000-22-22-1-110000    symplectic lifted from CSU2(𝔽5), Schur index 2

Smallest permutation representation of C2×CSU2(𝔽5)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 21 3 66 7 15 9 72)(2 16 57 20 8 22 51 14)(4 74 34 65 10 80 28 71)(5 83 48 73 11 77 42 79)(6 61 30 82 12 67 36 76)(13 58 85 46 19 52 91 40)(17 44 95 56 23 38 89 50)(18 41 84 43 24 47 78 37)(25 93 27 75 31 87 33 81)(26 88 45 92 32 94 39 86)(29 68 54 70 35 62 60 64)(49 96 53 63 55 90 59 69)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,21,3,66,7,15,9,72),(2,16,57,20,8,22,51,14),(4,74,34,65,10,80,28,71),(5,83,48,73,11,77,42,79),(6,61,30,82,12,67,36,76),(13,58,85,46,19,52,91,40),(17,44,95,56,23,38,89,50),(18,41,84,43,24,47,78,37),(25,93,27,75,31,87,33,81),(26,88,45,92,32,94,39,86),(29,68,54,70,35,62,60,64),(49,96,53,63,55,90,59,69)]])

Matrix representation of C2×CSU2(𝔽5) in GL8(𝔽241)

2400000000
2400010000
2401000000
2400100000
000015821516626
000080944137
0000113140228206
0000651581742
,
00010000
2400010000
0024010000
0240010000
00001832232849
00002211931060
000041742209
0000218196145127

G:=sub<GL(8,GF(241))| [240,240,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,158,80,113,65,0,0,0,0,215,94,140,158,0,0,0,0,166,41,228,174,0,0,0,0,26,37,206,2],[0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,183,221,41,218,0,0,0,0,223,193,74,196,0,0,0,0,28,10,220,145,0,0,0,0,49,60,9,127] >;

C2×CSU2(𝔽5) in GAP, Magma, Sage, TeX

C_2\times {\rm CSU}_2({\mathbb F}_5)
% in TeX

G:=Group("C2xCSU(2,5)");
// GroupNames label

G:=SmallGroup(480,949);
// by ID

G=gap.SmallGroup(480,949);
# by ID

Export

Character table of C2×CSU2(𝔽5) in TeX

׿
×
𝔽