direct product, non-abelian, not soluble
Aliases: C2xCSU2(F5), C22.3S5, SL2(F5).3C22, C2.8(C2xS5), (C2xSL2(F5)).2C2, SmallGroup(480,949)
Series: Chief►Derived ►Lower central ►Upper central
C1 — C2 — C22 — C2xSL2(F5) — C2xCSU2(F5) |
SL2(F5) — C2xCSU2(F5) |
SL2(F5) — C2xCSU2(F5) |
Subgroups: 586 in 66 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C8, C2xC4, Q8, C10, Dic3, C12, C2xC6, C2xC8, Q16, C2xQ8, Dic5, C2xC10, SL2(F3), Dic6, C2xDic3, C2xC12, C2xQ16, C5:C8, C2xDic5, CSU2(F3), C2xSL2(F3), C2xDic6, C2xC5:C8, C2xCSU2(F3), SL2(F5), CSU2(F5), C2xSL2(F5), C2xCSU2(F5)
Quotients: C1, C2, C22, S5, CSU2(F5), C2xS5, C2xCSU2(F5)
Character table of C2xCSU2(F5)
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 5 | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 10A | 10B | 10C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 30 | 30 | 24 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 24 | 24 | 24 | 20 | 20 | 20 | 20 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 4 | 4 | -4 | -4 | 1 | 2 | -2 | 0 | 0 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from C2xS5 |
ρ6 | 4 | 4 | 4 | 4 | 1 | 2 | 2 | 0 | 0 | -1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ7 | 4 | 4 | -4 | -4 | 1 | -2 | 2 | 0 | 0 | -1 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | orthogonal lifted from C2xS5 |
ρ8 | 4 | 4 | 4 | 4 | 1 | -2 | -2 | 0 | 0 | -1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ9 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ10 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ11 | 4 | -4 | 4 | -4 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -√3 | √3 | -√3 | √3 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ12 | 4 | -4 | 4 | -4 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | √3 | -√3 | √3 | -√3 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ13 | 4 | -4 | -4 | 4 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√3 | √3 | √3 | -√3 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ14 | 4 | -4 | -4 | 4 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √3 | -√3 | -√3 | √3 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ15 | 5 | 5 | 5 | 5 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ16 | 5 | 5 | -5 | -5 | -1 | -1 | 1 | 1 | -1 | 0 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | orthogonal lifted from C2xS5 |
ρ17 | 5 | 5 | 5 | 5 | -1 | 1 | 1 | 1 | 1 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ18 | 5 | 5 | -5 | -5 | -1 | 1 | -1 | 1 | -1 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | orthogonal lifted from C2xS5 |
ρ19 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | -2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2xS5 |
ρ20 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ21 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ22 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ23 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
ρ24 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | symplectic lifted from CSU2(F5), Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 21 3 66 7 15 9 72)(2 16 57 20 8 22 51 14)(4 74 34 65 10 80 28 71)(5 83 48 73 11 77 42 79)(6 61 30 82 12 67 36 76)(13 58 85 46 19 52 91 40)(17 44 95 56 23 38 89 50)(18 41 84 43 24 47 78 37)(25 93 27 75 31 87 33 81)(26 88 45 92 32 94 39 86)(29 68 54 70 35 62 60 64)(49 96 53 63 55 90 59 69)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,21,3,66,7,15,9,72)(2,16,57,20,8,22,51,14)(4,74,34,65,10,80,28,71)(5,83,48,73,11,77,42,79)(6,61,30,82,12,67,36,76)(13,58,85,46,19,52,91,40)(17,44,95,56,23,38,89,50)(18,41,84,43,24,47,78,37)(25,93,27,75,31,87,33,81)(26,88,45,92,32,94,39,86)(29,68,54,70,35,62,60,64)(49,96,53,63,55,90,59,69) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,21,3,66,7,15,9,72),(2,16,57,20,8,22,51,14),(4,74,34,65,10,80,28,71),(5,83,48,73,11,77,42,79),(6,61,30,82,12,67,36,76),(13,58,85,46,19,52,91,40),(17,44,95,56,23,38,89,50),(18,41,84,43,24,47,78,37),(25,93,27,75,31,87,33,81),(26,88,45,92,32,94,39,86),(29,68,54,70,35,62,60,64),(49,96,53,63,55,90,59,69)]])
Matrix representation of C2xCSU2(F5) ►in GL8(F241)
240 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
240 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
240 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 158 | 215 | 166 | 26 |
0 | 0 | 0 | 0 | 80 | 94 | 41 | 37 |
0 | 0 | 0 | 0 | 113 | 140 | 228 | 206 |
0 | 0 | 0 | 0 | 65 | 158 | 174 | 2 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
240 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 183 | 223 | 28 | 49 |
0 | 0 | 0 | 0 | 221 | 193 | 10 | 60 |
0 | 0 | 0 | 0 | 41 | 74 | 220 | 9 |
0 | 0 | 0 | 0 | 218 | 196 | 145 | 127 |
G:=sub<GL(8,GF(241))| [240,240,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,158,80,113,65,0,0,0,0,215,94,140,158,0,0,0,0,166,41,228,174,0,0,0,0,26,37,206,2],[0,240,0,0,0,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,183,221,41,218,0,0,0,0,223,193,74,196,0,0,0,0,28,10,220,145,0,0,0,0,49,60,9,127] >;
C2xCSU2(F5) in GAP, Magma, Sage, TeX
C_2\times {\rm CSU}_2({\mathbb F}_5)
% in TeX
G:=Group("C2xCSU(2,5)");
// GroupNames label
G:=SmallGroup(480,949);
// by ID
G=gap.SmallGroup(480,949);
# by ID
Export