Copied to
clipboard

G = C2×C2.S5order 480 = 25·3·5

Direct product of C2 and C2.S5

direct product, non-abelian, not soluble

Aliases: C2×C2.S5, C22.4S5, SL2(𝔽5)⋊2C22, C2.9(C2×S5), (C2×SL2(𝔽5))⋊2C2, SmallGroup(480,950)

Series: ChiefDerived Lower central Upper central

C1C2C22C2×SL2(𝔽5) — C2×C2.S5
SL2(𝔽5) — C2×C2.S5
SL2(𝔽5) — C2×C2.S5
C1C22

Subgroups: 826 in 78 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C8, C2×C4, D4, Q8, C23, C10, Dic3, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C2×C10, SL2(𝔽3), C2×Dic3, C3⋊D4, C22×S3, C22×C6, C2×SD16, C5⋊C8, C2×Dic5, GL2(𝔽3), C2×SL2(𝔽3), C2×C3⋊D4, C2×C5⋊C8, C2×GL2(𝔽3), SL2(𝔽5), C2.S5, C2×SL2(𝔽5), C2×C2.S5
Quotients: C1, C2, C22, S5, C2.S5, C2×S5, C2×C2.S5

Character table of C2×C2.S5

 class 12A2B2C2D2E34A4B56A6B6C6D6E6F6G8A8B8C8D10A10B10C
 size 11112020203030242020202020202030303030242424
ρ1111111111111111111111111    trivial
ρ21-11-1-1111-11-1-1-111-1111-1-1-1-11    linear of order 2
ρ31-11-11-111-11-111-1-1-11-1-111-1-11    linear of order 2
ρ41111-1-111111-1-1-1-111-1-1-1-1111    linear of order 2
ρ54444-2-2100-111111110000-1-1-1    orthogonal lifted from S5
ρ64-44-4-22100-1-111-1-1-11000011-1    orthogonal lifted from C2×S5
ρ7444422100-11-1-1-1-1110000-1-1-1    orthogonal lifted from S5
ρ84-44-42-2100-1-1-1-111-11000011-1    orthogonal lifted from C2×S5
ρ94-4-4400-200-120000-220000-111    symplectic lifted from C2.S5, Schur index 2
ρ1044-4-400-200-1-200002200001-11    symplectic lifted from C2.S5, Schur index 2
ρ114-4-4400100-1-1-3--3--3-31-10000-111    complex lifted from C2.S5
ρ124-4-4400100-1-1--3-3-3--31-10000-111    complex lifted from C2.S5
ρ1344-4-400100-11-3--3-3--3-1-100001-11    complex lifted from C2.S5
ρ1444-4-400100-11--3-3--3-3-1-100001-11    complex lifted from C2.S5
ρ155555-1-1-1110-1-1-1-1-1-1-11111000    orthogonal lifted from S5
ρ165-55-5-11-11-101-1-1111-1-1-111000    orthogonal lifted from C2×S5
ρ175-55-51-1-11-10111-1-11-111-1-1000    orthogonal lifted from C2×S5
ρ18555511-1110-11111-1-1-1-1-1-1000    orthogonal lifted from S5
ρ196666000-2-2100000000000111    orthogonal lifted from S5
ρ206-66-6000-22100000000000-1-11    orthogonal lifted from C2×S5
ρ216-6-660000010000000-2--2-2--21-1-1    complex lifted from C2.S5
ρ2266-6-60000010000000--2-2-2--2-11-1    complex lifted from C2.S5
ρ236-6-660000010000000--2-2--2-21-1-1    complex lifted from C2.S5
ρ2466-6-60000010000000-2--2--2-2-11-1    complex lifted from C2.S5

Smallest permutation representation of C2×C2.S5
On 80 points
Generators in S80
(1 47)(2 72 74 48 61 34)(3 18 21 41 50 53)(4 77 71 42 37 60)(5 43)(6 68 78 44 57 38)(7 22 17 45 54 49)(8 73 67 46 33 64)(9 29)(10 66 24 30 63 56)(11 76 75 31 36 35)(12 23 69 32 55 58)(13 25)(14 70 20 26 59 52)(15 80 79 27 40 39)(16 19 65 28 51 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,47),(2,72,74,48,61,34),(3,18,21,41,50,53),(4,77,71,42,37,60),(5,43),(6,68,78,44,57,38),(7,22,17,45,54,49),(8,73,67,46,33,64),(9,29),(10,66,24,30,63,56),(11,76,75,31,36,35),(12,23,69,32,55,58),(13,25),(14,70,20,26,59,52),(15,80,79,27,40,39),(16,19,65,28,51,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

Matrix representation of C2×C2.S5 in GL5(𝔽241)

2400000
01178211181
0018335
0033233
009023826
,
10000
0024010
0124000
002400240
00201

G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,1,0,0,0,0,178,183,3,90,0,211,3,32,238,0,181,5,33,26],[1,0,0,0,0,0,0,1,0,0,0,240,240,240,2,0,1,0,0,0,0,0,0,240,1] >;

C2×C2.S5 in GAP, Magma, Sage, TeX

C_2\times C_2.S_5
% in TeX

G:=Group("C2xC2.S5");
// GroupNames label

G:=SmallGroup(480,950);
// by ID

G=gap.SmallGroup(480,950);
# by ID

Export

Character table of C2×C2.S5 in TeX

׿
×
𝔽