direct product, non-abelian, not soluble
Aliases: C2xC2.S5, C22.4S5, SL2(F5):2C22, C2.9(C2xS5), (C2xSL2(F5)):2C2, SmallGroup(480,950)
Series: Chief►Derived ►Lower central ►Upper central
C1 — C2 — C22 — C2xSL2(F5) — C2xC2.S5 |
SL2(F5) — C2xC2.S5 |
SL2(F5) — C2xC2.S5 |
Subgroups: 826 in 78 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C8, C2xC4, D4, Q8, C23, C10, Dic3, D6, C2xC6, C2xC8, SD16, C2xD4, C2xQ8, Dic5, C2xC10, SL2(F3), C2xDic3, C3:D4, C22xS3, C22xC6, C2xSD16, C5:C8, C2xDic5, GL2(F3), C2xSL2(F3), C2xC3:D4, C2xC5:C8, C2xGL2(F3), SL2(F5), C2.S5, C2xSL2(F5), C2xC2.S5
Quotients: C1, C2, C22, S5, C2.S5, C2xS5, C2xC2.S5
Character table of C2xC2.S5
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 10A | 10B | 10C | |
size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 30 | 30 | 24 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 4 | 4 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ6 | 4 | -4 | 4 | -4 | -2 | 2 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from C2xS5 |
ρ7 | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 0 | 0 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ8 | 4 | -4 | 4 | -4 | 2 | -2 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from C2xS5 |
ρ9 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | symplectic lifted from C2.S5, Schur index 2 |
ρ10 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | symplectic lifted from C2.S5, Schur index 2 |
ρ11 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | complex lifted from C2.S5 |
ρ12 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | complex lifted from C2.S5 |
ρ13 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | complex lifted from C2.S5 |
ρ14 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | complex lifted from C2.S5 |
ρ15 | 5 | 5 | 5 | 5 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ16 | 5 | -5 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | 0 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from C2xS5 |
ρ17 | 5 | -5 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | 0 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from C2xS5 |
ρ18 | 5 | 5 | 5 | 5 | 1 | 1 | -1 | 1 | 1 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ19 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ20 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | -2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | orthogonal lifted from C2xS5 |
ρ21 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 1 | -1 | -1 | complex lifted from C2.S5 |
ρ22 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -1 | 1 | -1 | complex lifted from C2.S5 |
ρ23 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 1 | -1 | -1 | complex lifted from C2.S5 |
ρ24 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -1 | 1 | -1 | complex lifted from C2.S5 |
(1 47)(2 72 74 48 61 34)(3 18 21 41 50 53)(4 77 71 42 37 60)(5 43)(6 68 78 44 57 38)(7 22 17 45 54 49)(8 73 67 46 33 64)(9 29)(10 66 24 30 63 56)(11 76 75 31 36 35)(12 23 69 32 55 58)(13 25)(14 70 20 26 59 52)(15 80 79 27 40 39)(16 19 65 28 51 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,47),(2,72,74,48,61,34),(3,18,21,41,50,53),(4,77,71,42,37,60),(5,43),(6,68,78,44,57,38),(7,22,17,45,54,49),(8,73,67,46,33,64),(9,29),(10,66,24,30,63,56),(11,76,75,31,36,35),(12,23,69,32,55,58),(13,25),(14,70,20,26,59,52),(15,80,79,27,40,39),(16,19,65,28,51,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
Matrix representation of C2xC2.S5 ►in GL5(F241)
240 | 0 | 0 | 0 | 0 |
0 | 1 | 178 | 211 | 181 |
0 | 0 | 183 | 3 | 5 |
0 | 0 | 3 | 32 | 33 |
0 | 0 | 90 | 238 | 26 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 |
0 | 1 | 240 | 0 | 0 |
0 | 0 | 240 | 0 | 240 |
0 | 0 | 2 | 0 | 1 |
G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,1,0,0,0,0,178,183,3,90,0,211,3,32,238,0,181,5,33,26],[1,0,0,0,0,0,0,1,0,0,0,240,240,240,2,0,1,0,0,0,0,0,0,240,1] >;
C2xC2.S5 in GAP, Magma, Sage, TeX
C_2\times C_2.S_5
% in TeX
G:=Group("C2xC2.S5");
// GroupNames label
G:=SmallGroup(480,950);
// by ID
G=gap.SmallGroup(480,950);
# by ID
Export