direct product, non-abelian, not soluble
Aliases: C2×C2.S5, C22.4S5, SL2(𝔽5)⋊2C22, C2.9(C2×S5), (C2×SL2(𝔽5))⋊2C2, SmallGroup(480,950)
Series: Chief►Derived ►Lower central ►Upper central
C1 — C2 — C22 — C2×SL2(𝔽5) — C2×C2.S5 |
SL2(𝔽5) — C2×C2.S5 |
SL2(𝔽5) — C2×C2.S5 |
Subgroups: 826 in 78 conjugacy classes, 10 normal (6 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C8, C2×C4, D4, Q8, C23, C10, Dic3, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, Dic5, C2×C10, SL2(𝔽3), C2×Dic3, C3⋊D4, C22×S3, C22×C6, C2×SD16, C5⋊C8, C2×Dic5, GL2(𝔽3), C2×SL2(𝔽3), C2×C3⋊D4, C2×C5⋊C8, C2×GL2(𝔽3), SL2(𝔽5), C2.S5, C2×SL2(𝔽5), C2×C2.S5
Quotients: C1, C2, C22, S5, C2.S5, C2×S5, C2×C2.S5
Character table of C2×C2.S5
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 5 | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 8A | 8B | 8C | 8D | 10A | 10B | 10C | |
size | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 30 | 30 | 24 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 24 | 24 | 24 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 4 | 4 | 4 | 4 | -2 | -2 | 1 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ6 | 4 | -4 | 4 | -4 | -2 | 2 | 1 | 0 | 0 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from C2×S5 |
ρ7 | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 0 | 0 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from S5 |
ρ8 | 4 | -4 | 4 | -4 | 2 | -2 | 1 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | orthogonal lifted from C2×S5 |
ρ9 | 4 | -4 | -4 | 4 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | symplectic lifted from C2.S5, Schur index 2 |
ρ10 | 4 | 4 | -4 | -4 | 0 | 0 | -2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | symplectic lifted from C2.S5, Schur index 2 |
ρ11 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | √-3 | -√-3 | -√-3 | √-3 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | complex lifted from C2.S5 |
ρ12 | 4 | -4 | -4 | 4 | 0 | 0 | 1 | 0 | 0 | -1 | -1 | -√-3 | √-3 | √-3 | -√-3 | 1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | complex lifted from C2.S5 |
ρ13 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | √-3 | -√-3 | √-3 | -√-3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | complex lifted from C2.S5 |
ρ14 | 4 | 4 | -4 | -4 | 0 | 0 | 1 | 0 | 0 | -1 | 1 | -√-3 | √-3 | -√-3 | √-3 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | complex lifted from C2.S5 |
ρ15 | 5 | 5 | 5 | 5 | -1 | -1 | -1 | 1 | 1 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ16 | 5 | -5 | 5 | -5 | -1 | 1 | -1 | 1 | -1 | 0 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 0 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ17 | 5 | -5 | 5 | -5 | 1 | -1 | -1 | 1 | -1 | 0 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from C2×S5 |
ρ18 | 5 | 5 | 5 | 5 | 1 | 1 | -1 | 1 | 1 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | orthogonal lifted from S5 |
ρ19 | 6 | 6 | 6 | 6 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | orthogonal lifted from S5 |
ρ20 | 6 | -6 | 6 | -6 | 0 | 0 | 0 | -2 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | orthogonal lifted from C2×S5 |
ρ21 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | 1 | -1 | -1 | complex lifted from C2.S5 |
ρ22 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | -1 | 1 | -1 | complex lifted from C2.S5 |
ρ23 | 6 | -6 | -6 | 6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | 1 | -1 | -1 | complex lifted from C2.S5 |
ρ24 | 6 | 6 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | -1 | 1 | -1 | complex lifted from C2.S5 |
(1 47)(2 72 74 48 61 34)(3 18 21 41 50 53)(4 77 71 42 37 60)(5 43)(6 68 78 44 57 38)(7 22 17 45 54 49)(8 73 67 46 33 64)(9 29)(10 66 24 30 63 56)(11 76 75 31 36 35)(12 23 69 32 55 58)(13 25)(14 70 20 26 59 52)(15 80 79 27 40 39)(16 19 65 28 51 62)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
G:=sub<Sym(80)| (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;
G:=Group( (1,47)(2,72,74,48,61,34)(3,18,21,41,50,53)(4,77,71,42,37,60)(5,43)(6,68,78,44,57,38)(7,22,17,45,54,49)(8,73,67,46,33,64)(9,29)(10,66,24,30,63,56)(11,76,75,31,36,35)(12,23,69,32,55,58)(13,25)(14,70,20,26,59,52)(15,80,79,27,40,39)(16,19,65,28,51,62), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );
G=PermutationGroup([[(1,47),(2,72,74,48,61,34),(3,18,21,41,50,53),(4,77,71,42,37,60),(5,43),(6,68,78,44,57,38),(7,22,17,45,54,49),(8,73,67,46,33,64),(9,29),(10,66,24,30,63,56),(11,76,75,31,36,35),(12,23,69,32,55,58),(13,25),(14,70,20,26,59,52),(15,80,79,27,40,39),(16,19,65,28,51,62)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])
Matrix representation of C2×C2.S5 ►in GL5(𝔽241)
240 | 0 | 0 | 0 | 0 |
0 | 1 | 178 | 211 | 181 |
0 | 0 | 183 | 3 | 5 |
0 | 0 | 3 | 32 | 33 |
0 | 0 | 90 | 238 | 26 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 1 | 0 |
0 | 1 | 240 | 0 | 0 |
0 | 0 | 240 | 0 | 240 |
0 | 0 | 2 | 0 | 1 |
G:=sub<GL(5,GF(241))| [240,0,0,0,0,0,1,0,0,0,0,178,183,3,90,0,211,3,32,238,0,181,5,33,26],[1,0,0,0,0,0,0,1,0,0,0,240,240,240,2,0,1,0,0,0,0,0,0,240,1] >;
C2×C2.S5 in GAP, Magma, Sage, TeX
C_2\times C_2.S_5
% in TeX
G:=Group("C2xC2.S5");
// GroupNames label
G:=SmallGroup(480,950);
// by ID
G=gap.SmallGroup(480,950);
# by ID
Export