Copied to
clipboard

G = C4.6S5order 480 = 25·3·5

3rd central extension by C4 of S5

non-abelian, not soluble

Aliases: C4.6S5, CSU2(𝔽5)⋊3C2, SL2(𝔽5).1C22, C4.A54C2, C2.5(C2×S5), C2.S53C2, SmallGroup(480,946)

Series: ChiefDerived Lower central Upper central

C1C2C4C4.A5 — C4.6S5
SL2(𝔽5) — C4.6S5
SL2(𝔽5) — C4.6S5
C1C4

Subgroups: 674 in 67 conjugacy classes, 8 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C8, C2×C4, D4, Q8, D5, C10, Dic3, C12, D6, C2×C6, C2×C8, D8, SD16, Q16, C4○D4, Dic5, C20, D10, SL2(𝔽3), Dic6, C4×S3, D12, C3⋊D4, C2×C12, C4○D8, C5⋊C8, C4×D5, CSU2(𝔽3), GL2(𝔽3), C4.A4, C4○D12, D5⋊C8, C4.6S4, SL2(𝔽5), CSU2(𝔽5), C2.S5, C4.A5, C4.6S5
Quotients: C1, C2, C22, S5, C2×S5, C4.6S5

Character table of C4.6S5

 class 12A2B2C34A4B4C4D56A6B6C8A8B8C8D1012A12B12C12D20A20B
 size 11203020112030242020203030303024202020202424
ρ1111111111111111111111111    trivial
ρ211-1-11-1-1111-1-1111-1-1111-1-1-1-1    linear of order 2
ρ311-11111-111-1-11-1-1-1-11-1-11111    linear of order 2
ρ4111-11-1-1-111111-1-1111-1-1-1-1-1-1    linear of order 2
ρ544201-4-4-20-1-1-110000-111-1-111    orthogonal lifted from C2×S5
ρ644-201-4-420-11110000-1-1-1-1-111    orthogonal lifted from C2×S5
ρ744-20144-20-11110000-11111-1-1    orthogonal lifted from S5
ρ8442014420-1-1-110000-1-1-111-1-1    orthogonal lifted from S5
ρ94-400-2-4i4i00-10020000100-2i2ii-i    complex faithful, Schur index 2
ρ104-400-24i-4i00-100200001002i-2i-ii    complex faithful, Schur index 2
ρ114-40014i-4i00-1--3-3-1000013-3-ii-ii    complex faithful
ρ124-4001-4i4i00-1-3--3-1000013-3i-ii-i    complex faithful
ρ134-40014i-4i00-1-3--3-100001-33-ii-ii    complex faithful
ρ144-4001-4i4i00-1--3-3-100001-33i-ii-i    complex faithful
ρ155511-15511011-1-1-1-1-1011-1-100    orthogonal lifted from S5
ρ16551-1-1-5-5-11011-111-1-10-1-11100    orthogonal lifted from C2×S5
ρ1755-1-1-1-5-5110-1-1-1-1-1110111100    orthogonal lifted from C2×S5
ρ1855-11-155-110-1-1-111110-1-1-1-100    orthogonal lifted from S5
ρ1966020-6-60-21000000010000-1-1    orthogonal lifted from C2×S5
ρ20660-20660-2100000001000011    orthogonal lifted from S5
ρ216-60006i-6i001000-22--2-2-10000i-i    complex faithful
ρ226-6000-6i6i001000-22-2--2-10000-ii    complex faithful
ρ236-6000-6i6i0010002-2--2-2-10000-ii    complex faithful
ρ246-60006i-6i0010002-2-2--2-10000i-i    complex faithful

Smallest permutation representation of C4.6S5
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 14 29 15 43 26)(2 19 34 20 48 11)(3 24 39 25 33 16)(4 9 44 10 38 21)(5 30 18 31 12 42)(6 35 23 36 17 47)(7 40 28 41 22 32)(8 45 13 46 27 37)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,14,29,15,43,26)(2,19,34,20,48,11)(3,24,39,25,33,16)(4,9,44,10,38,21)(5,30,18,31,12,42)(6,35,23,36,17,47)(7,40,28,41,22,32)(8,45,13,46,27,37)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,14,29,15,43,26)(2,19,34,20,48,11)(3,24,39,25,33,16)(4,9,44,10,38,21)(5,30,18,31,12,42)(6,35,23,36,17,47)(7,40,28,41,22,32)(8,45,13,46,27,37) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,14,29,15,43,26),(2,19,34,20,48,11),(3,24,39,25,33,16),(4,9,44,10,38,21),(5,30,18,31,12,42),(6,35,23,36,17,47),(7,40,28,41,22,32),(8,45,13,46,27,37)]])

Matrix representation of C4.6S5 in GL4(𝔽5) generated by

2440
4421
2024
1344
,
2310
3301
2134
1002
G:=sub<GL(4,GF(5))| [2,4,2,1,4,4,0,3,4,2,2,4,0,1,4,4],[2,3,2,1,3,3,1,0,1,0,3,0,0,1,4,2] >;

C4.6S5 in GAP, Magma, Sage, TeX

C_4._6S_5
% in TeX

G:=Group("C4.6S5");
// GroupNames label

G:=SmallGroup(480,946);
// by ID

G=gap.SmallGroup(480,946);
# by ID

Export

Character table of C4.6S5 in TeX

׿
×
𝔽