Extensions 1→N→G→Q→1 with N=M4(2) and Q=C5×S3

Direct product G=N×Q with N=M4(2) and Q=C5×S3
dρLabelID
C5×S3×M4(2)1204C5xS3xM4(2)480,785

Semidirect products G=N:Q with N=M4(2) and Q=C5×S3
extensionφ:Q→Out NdρLabelID
M4(2)⋊1(C5×S3) = C5×C8⋊D6φ: C5×S3/C15C2 ⊆ Out M4(2)1204M4(2):1(C5xS3)480,787
M4(2)⋊2(C5×S3) = C5×C8.D6φ: C5×S3/C15C2 ⊆ Out M4(2)2404M4(2):2(C5xS3)480,788
M4(2)⋊3(C5×S3) = C5×C12.46D4φ: C5×S3/C15C2 ⊆ Out M4(2)1204M4(2):3(C5xS3)480,142
M4(2)⋊4(C5×S3) = C5×D12⋊C4φ: C5×S3/C15C2 ⊆ Out M4(2)1204M4(2):4(C5xS3)480,144
M4(2)⋊5(C5×S3) = C5×D12.C4φ: trivial image2404M4(2):5(C5xS3)480,786

Non-split extensions G=N.Q with N=M4(2) and Q=C5×S3
extensionφ:Q→Out NdρLabelID
M4(2).1(C5×S3) = C5×C12.53D4φ: C5×S3/C15C2 ⊆ Out M4(2)2404M4(2).1(C5xS3)480,141
M4(2).2(C5×S3) = C5×C12.47D4φ: C5×S3/C15C2 ⊆ Out M4(2)2404M4(2).2(C5xS3)480,143

׿
×
𝔽