Copied to
clipboard

G = C5×C12.46D4order 480 = 25·3·5

Direct product of C5 and C12.46D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C12.46D4, C60.224D4, C20.63D12, C4.11(C5×D12), C12.46(C5×D4), (C22×S3).C20, (C2×D12).6C10, (C2×C20).213D6, C159(C4.D4), M4(2)⋊3(C5×S3), (C5×M4(2))⋊7S3, C4.Dic32C10, C22.4(S3×C20), C10.55(D6⋊C4), (C10×D12).16C2, (C3×M4(2))⋊7C10, C20.114(C3⋊D4), C30.97(C22⋊C4), (C15×M4(2))⋊17C2, (C2×C60).342C22, (S3×C2×C10).7C4, C2.9(C5×D6⋊C4), C31(C5×C4.D4), (C2×C6).2(C2×C20), (C2×C4).1(S3×C10), C4.21(C5×C3⋊D4), C6.8(C5×C22⋊C4), (C2×C10).63(C4×S3), (C2×C30).126(C2×C4), (C2×C12).12(C2×C10), (C5×C4.Dic3)⋊14C2, SmallGroup(480,142)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C5×C12.46D4
C1C3C6C2×C6C2×C12C2×C60C10×D12 — C5×C12.46D4
C3C6C2×C6 — C5×C12.46D4
C1C10C2×C20C5×M4(2)

Generators and relations for C5×C12.46D4
 G = < a,b,c,d,e | a5=b8=c2=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b5, bd=db, ebe=bc, cd=dc, ce=ec, ede=d-1 >

Subgroups: 292 in 92 conjugacy classes, 38 normal (34 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, D4, C23, C10, C10, C12, D6, C2×C6, C15, M4(2), M4(2), C2×D4, C20, C2×C10, C2×C10, C3⋊C8, C24, D12, C2×C12, C22×S3, C5×S3, C30, C30, C4.D4, C40, C2×C20, C5×D4, C22×C10, C4.Dic3, C3×M4(2), C2×D12, C60, S3×C10, C2×C30, C5×M4(2), C5×M4(2), D4×C10, C12.46D4, C5×C3⋊C8, C120, C5×D12, C2×C60, S3×C2×C10, C5×C4.D4, C5×C4.Dic3, C15×M4(2), C10×D12, C5×C12.46D4
Quotients: C1, C2, C4, C22, C5, S3, C2×C4, D4, C10, D6, C22⋊C4, C20, C2×C10, C4×S3, D12, C3⋊D4, C5×S3, C4.D4, C2×C20, C5×D4, D6⋊C4, S3×C10, C5×C22⋊C4, C12.46D4, S3×C20, C5×D12, C5×C3⋊D4, C5×C4.D4, C5×D6⋊C4, C5×C12.46D4

Smallest permutation representation of C5×C12.46D4
On 120 points
Generators in S120
(1 15 35 108 29)(2 16 36 109 30)(3 9 37 110 31)(4 10 38 111 32)(5 11 39 112 25)(6 12 40 105 26)(7 13 33 106 27)(8 14 34 107 28)(17 43 58 82 51)(18 44 59 83 52)(19 45 60 84 53)(20 46 61 85 54)(21 47 62 86 55)(22 48 63 87 56)(23 41 64 88 49)(24 42 57 81 50)(65 93 118 77 102)(66 94 119 78 103)(67 95 120 79 104)(68 96 113 80 97)(69 89 114 73 98)(70 90 115 74 99)(71 91 116 75 100)(72 92 117 76 101)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(2 6)(4 8)(10 14)(12 16)(18 22)(20 24)(26 30)(28 32)(34 38)(36 40)(42 46)(44 48)(50 54)(52 56)(57 61)(59 63)(65 69)(67 71)(73 77)(75 79)(81 85)(83 87)(89 93)(91 95)(98 102)(100 104)(105 109)(107 111)(114 118)(116 120)
(1 99 19)(2 100 20)(3 101 21)(4 102 22)(5 103 23)(6 104 24)(7 97 17)(8 98 18)(9 72 47)(10 65 48)(11 66 41)(12 67 42)(13 68 43)(14 69 44)(15 70 45)(16 71 46)(25 78 49)(26 79 50)(27 80 51)(28 73 52)(29 74 53)(30 75 54)(31 76 55)(32 77 56)(33 96 58)(34 89 59)(35 90 60)(36 91 61)(37 92 62)(38 93 63)(39 94 64)(40 95 57)(81 105 120)(82 106 113)(83 107 114)(84 108 115)(85 109 116)(86 110 117)(87 111 118)(88 112 119)
(2 6)(3 7)(9 13)(12 16)(17 101)(18 98)(19 99)(20 104)(21 97)(22 102)(23 103)(24 100)(26 30)(27 31)(33 37)(36 40)(41 66)(42 71)(43 72)(44 69)(45 70)(46 67)(47 68)(48 65)(49 78)(50 75)(51 76)(52 73)(53 74)(54 79)(55 80)(56 77)(57 91)(58 92)(59 89)(60 90)(61 95)(62 96)(63 93)(64 94)(81 116)(82 117)(83 114)(84 115)(85 120)(86 113)(87 118)(88 119)(105 109)(106 110)

G:=sub<Sym(120)| (1,15,35,108,29)(2,16,36,109,30)(3,9,37,110,31)(4,10,38,111,32)(5,11,39,112,25)(6,12,40,105,26)(7,13,33,106,27)(8,14,34,107,28)(17,43,58,82,51)(18,44,59,83,52)(19,45,60,84,53)(20,46,61,85,54)(21,47,62,86,55)(22,48,63,87,56)(23,41,64,88,49)(24,42,57,81,50)(65,93,118,77,102)(66,94,119,78,103)(67,95,120,79,104)(68,96,113,80,97)(69,89,114,73,98)(70,90,115,74,99)(71,91,116,75,100)(72,92,117,76,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(105,109)(107,111)(114,118)(116,120), (1,99,19)(2,100,20)(3,101,21)(4,102,22)(5,103,23)(6,104,24)(7,97,17)(8,98,18)(9,72,47)(10,65,48)(11,66,41)(12,67,42)(13,68,43)(14,69,44)(15,70,45)(16,71,46)(25,78,49)(26,79,50)(27,80,51)(28,73,52)(29,74,53)(30,75,54)(31,76,55)(32,77,56)(33,96,58)(34,89,59)(35,90,60)(36,91,61)(37,92,62)(38,93,63)(39,94,64)(40,95,57)(81,105,120)(82,106,113)(83,107,114)(84,108,115)(85,109,116)(86,110,117)(87,111,118)(88,112,119), (2,6)(3,7)(9,13)(12,16)(17,101)(18,98)(19,99)(20,104)(21,97)(22,102)(23,103)(24,100)(26,30)(27,31)(33,37)(36,40)(41,66)(42,71)(43,72)(44,69)(45,70)(46,67)(47,68)(48,65)(49,78)(50,75)(51,76)(52,73)(53,74)(54,79)(55,80)(56,77)(57,91)(58,92)(59,89)(60,90)(61,95)(62,96)(63,93)(64,94)(81,116)(82,117)(83,114)(84,115)(85,120)(86,113)(87,118)(88,119)(105,109)(106,110)>;

G:=Group( (1,15,35,108,29)(2,16,36,109,30)(3,9,37,110,31)(4,10,38,111,32)(5,11,39,112,25)(6,12,40,105,26)(7,13,33,106,27)(8,14,34,107,28)(17,43,58,82,51)(18,44,59,83,52)(19,45,60,84,53)(20,46,61,85,54)(21,47,62,86,55)(22,48,63,87,56)(23,41,64,88,49)(24,42,57,81,50)(65,93,118,77,102)(66,94,119,78,103)(67,95,120,79,104)(68,96,113,80,97)(69,89,114,73,98)(70,90,115,74,99)(71,91,116,75,100)(72,92,117,76,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,6)(4,8)(10,14)(12,16)(18,22)(20,24)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(57,61)(59,63)(65,69)(67,71)(73,77)(75,79)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(105,109)(107,111)(114,118)(116,120), (1,99,19)(2,100,20)(3,101,21)(4,102,22)(5,103,23)(6,104,24)(7,97,17)(8,98,18)(9,72,47)(10,65,48)(11,66,41)(12,67,42)(13,68,43)(14,69,44)(15,70,45)(16,71,46)(25,78,49)(26,79,50)(27,80,51)(28,73,52)(29,74,53)(30,75,54)(31,76,55)(32,77,56)(33,96,58)(34,89,59)(35,90,60)(36,91,61)(37,92,62)(38,93,63)(39,94,64)(40,95,57)(81,105,120)(82,106,113)(83,107,114)(84,108,115)(85,109,116)(86,110,117)(87,111,118)(88,112,119), (2,6)(3,7)(9,13)(12,16)(17,101)(18,98)(19,99)(20,104)(21,97)(22,102)(23,103)(24,100)(26,30)(27,31)(33,37)(36,40)(41,66)(42,71)(43,72)(44,69)(45,70)(46,67)(47,68)(48,65)(49,78)(50,75)(51,76)(52,73)(53,74)(54,79)(55,80)(56,77)(57,91)(58,92)(59,89)(60,90)(61,95)(62,96)(63,93)(64,94)(81,116)(82,117)(83,114)(84,115)(85,120)(86,113)(87,118)(88,119)(105,109)(106,110) );

G=PermutationGroup([[(1,15,35,108,29),(2,16,36,109,30),(3,9,37,110,31),(4,10,38,111,32),(5,11,39,112,25),(6,12,40,105,26),(7,13,33,106,27),(8,14,34,107,28),(17,43,58,82,51),(18,44,59,83,52),(19,45,60,84,53),(20,46,61,85,54),(21,47,62,86,55),(22,48,63,87,56),(23,41,64,88,49),(24,42,57,81,50),(65,93,118,77,102),(66,94,119,78,103),(67,95,120,79,104),(68,96,113,80,97),(69,89,114,73,98),(70,90,115,74,99),(71,91,116,75,100),(72,92,117,76,101)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(2,6),(4,8),(10,14),(12,16),(18,22),(20,24),(26,30),(28,32),(34,38),(36,40),(42,46),(44,48),(50,54),(52,56),(57,61),(59,63),(65,69),(67,71),(73,77),(75,79),(81,85),(83,87),(89,93),(91,95),(98,102),(100,104),(105,109),(107,111),(114,118),(116,120)], [(1,99,19),(2,100,20),(3,101,21),(4,102,22),(5,103,23),(6,104,24),(7,97,17),(8,98,18),(9,72,47),(10,65,48),(11,66,41),(12,67,42),(13,68,43),(14,69,44),(15,70,45),(16,71,46),(25,78,49),(26,79,50),(27,80,51),(28,73,52),(29,74,53),(30,75,54),(31,76,55),(32,77,56),(33,96,58),(34,89,59),(35,90,60),(36,91,61),(37,92,62),(38,93,63),(39,94,64),(40,95,57),(81,105,120),(82,106,113),(83,107,114),(84,108,115),(85,109,116),(86,110,117),(87,111,118),(88,112,119)], [(2,6),(3,7),(9,13),(12,16),(17,101),(18,98),(19,99),(20,104),(21,97),(22,102),(23,103),(24,100),(26,30),(27,31),(33,37),(36,40),(41,66),(42,71),(43,72),(44,69),(45,70),(46,67),(47,68),(48,65),(49,78),(50,75),(51,76),(52,73),(53,74),(54,79),(55,80),(56,77),(57,91),(58,92),(59,89),(60,90),(61,95),(62,96),(63,93),(64,94),(81,116),(82,117),(83,114),(84,115),(85,120),(86,113),(87,118),(88,119),(105,109),(106,110)]])

105 conjugacy classes

class 1 2A2B2C2D 3 4A4B5A5B5C5D6A6B8A8B8C8D10A10B10C10D10E10F10G10H10I···10P12A12B12C15A15B15C15D20A···20H24A24B24C24D30A30B30C30D30E30F30G30H40A···40H40I···40P60A···60H60I60J60K60L120A···120P
order122223445555668888101010101010101010···101212121515151520···2024242424303030303030303040···4040···4060···6060606060120···120
size11212122221111244412121111222212···1222422222···24444222244444···412···122···244444···4

105 irreducible representations

dim11111111112222222222224444
type++++++++++
imageC1C2C2C2C4C5C10C10C10C20S3D4D6D12C3⋊D4C4×S3C5×S3C5×D4S3×C10C5×D12C5×C3⋊D4S3×C20C4.D4C12.46D4C5×C4.D4C5×C12.46D4
kernelC5×C12.46D4C5×C4.Dic3C15×M4(2)C10×D12S3×C2×C10C12.46D4C4.Dic3C3×M4(2)C2×D12C22×S3C5×M4(2)C60C2×C20C20C20C2×C10M4(2)C12C2×C4C4C4C22C15C5C3C1
# reps111144444161212224848881248

Matrix representation of C5×C12.46D4 in GL4(𝔽241) generated by

98000
09800
00980
00098
,
9081226153
20510612034
198864716
1554329239
,
10125189
01728
002400
000240
,
24011088
240098231
002401
002400
,
1240205127
024016936
001240
000240
G:=sub<GL(4,GF(241))| [98,0,0,0,0,98,0,0,0,0,98,0,0,0,0,98],[90,205,198,155,81,106,86,43,226,120,47,29,153,34,16,239],[1,0,0,0,0,1,0,0,125,72,240,0,189,8,0,240],[240,240,0,0,1,0,0,0,10,98,240,240,88,231,1,0],[1,0,0,0,240,240,0,0,205,169,1,0,127,36,240,240] >;

C5×C12.46D4 in GAP, Magma, Sage, TeX

C_5\times C_{12}._{46}D_4
% in TeX

G:=Group("C5xC12.46D4");
// GroupNames label

G:=SmallGroup(480,142);
// by ID

G=gap.SmallGroup(480,142);
# by ID

G:=PCGroup([7,-2,-2,-5,-2,-2,-2,-3,589,148,2803,136,2111,15686]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^8=c^2=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^5,b*d=d*b,e*b*e=b*c,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽