Extensions 1→N→G→Q→1 with N=Dic3 and Q=D20

Direct product G=NxQ with N=Dic3 and Q=D20
dρLabelID
Dic3xD20240Dic3xD20480,501

Semidirect products G=N:Q with N=Dic3 and Q=D20
extensionφ:Q→Out NdρLabelID
Dic3:1D20 = C12:D20φ: D20/C20C2 ⊆ Out Dic3240Dic3:1D20480,534
Dic3:2D20 = Dic3:D20φ: D20/D10C2 ⊆ Out Dic3240Dic3:2D20480,485
Dic3:3D20 = D30:2D4φ: D20/D10C2 ⊆ Out Dic3240Dic3:3D20480,535
Dic3:4D20 = Dic3:4D20φ: trivial image240Dic3:4D20480,471
Dic3:5D20 = D60:14C4φ: trivial image240Dic3:5D20480,504

Non-split extensions G=N.Q with N=Dic3 and Q=D20
extensionφ:Q→Out NdρLabelID
Dic3.1D20 = S3xC40:C2φ: D20/C20C2 ⊆ Out Dic31204Dic3.1D20480,327
Dic3.2D20 = S3xD40φ: D20/C20C2 ⊆ Out Dic31204+Dic3.2D20480,328
Dic3.3D20 = S3xDic20φ: D20/C20C2 ⊆ Out Dic32404-Dic3.3D20480,338
Dic3.4D20 = Dic3.D20φ: D20/C20C2 ⊆ Out Dic3240Dic3.4D20480,429
Dic3.5D20 = C20:4Dic6φ: D20/C20C2 ⊆ Out Dic3480Dic3.5D20480,545
Dic3.6D20 = C40:1D6φ: D20/D10C2 ⊆ Out Dic31204+Dic3.6D20480,329
Dic3.7D20 = D40:S3φ: D20/D10C2 ⊆ Out Dic31204Dic3.7D20480,330
Dic3.8D20 = Dic20:S3φ: D20/D10C2 ⊆ Out Dic32404Dic3.8D20480,339
Dic3.9D20 = C40.2D6φ: D20/D10C2 ⊆ Out Dic32404-Dic3.9D20480,350
Dic3.10D20 = D10:2Dic6φ: D20/D10C2 ⊆ Out Dic3240Dic3.10D20480,498
Dic3.11D20 = D30:4Q8φ: D20/D10C2 ⊆ Out Dic3240Dic3.11D20480,505
Dic3.12D20 = D6.1D20φ: trivial image2404Dic3.12D20480,348
Dic3.13D20 = D40:7S3φ: trivial image2404-Dic3.13D20480,349
Dic3.14D20 = D120:5C2φ: trivial image2404+Dic3.14D20480,351

׿
x
:
Z
F
o
wr
Q
<